You are here

3D BASKI MATERYALİNİN EĞİTİMDE KULLANIMI: QUA VADİS?

The Using of 3D Printing Material in Education: QUA VADIS?

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
3D printing material with the use of health care services in advancing medical visualization of production, examples of use in educational and research areas is widespread. 3D printing materials produced in the mid 1980s, the concept of stereolithography has entered since 1986. Also in industrial applications such as automotive and aerospace industry it has been able to produce the 3D printing material.With the understanding of 3D materials with computer tomograph in the 1990s led to the visualization of anatomical structures. It is generated by various software in the production of 3D materials. The generated 3D printing materials, such as education and expertise in pre-clinical training, surgical planning, designing implants and tissue such as health care and the use of toxic drugs, such as are used in research and production of bio organs of repression.The generated 3D printing materials, such as education and expertise in pre-clinical training, surgical planning, designing implants and tissue such as health care and the use of toxic drugs, such as are used in research and production of bio-printing organs. In assuming different opinions on the use of 3D printing material, 3D printing materials in education, especially in challenging anatomical and pathological conditions 3D learning development, to allow an intensive training in specialized training, can be said to have an important contribution to the field of education in higher education and effective project-based in terms of implementation of learning.In this study, 3D printing production, health and will be given information about areas in education. Not: Yazarlar arasında herhangi bir çıkar çatışması yoktur. Yazının hazırlanmasında kurumsal ve finansal herhangi bir destek alınmamıştır.
Abstract (Original Language): 
3D baskı materyalleri ilerleyen tıbbi görselleştirmenin kullanımıyla birlikte sağlık bakım hizmetlerinde, eğitimde ve araştırma alanlarında yaygınlaşmaktadır. 3D baskı materyalleri 1980’lerin ortasında üretilerek 1986 yılından itibaren stereolitografi kavramı yaşama girmiştir. Otomobil endüstrisi ve havacılık gibi endüstriyel uygulamalarda da 3D baskı materyalini üretmek mümkün olmuştur. 1990’lı yıllarda bilgisayarlı tomografiyle tanışılmasıyla birlikte 3D materyalleri anatomik yapıların görselleştirilmesini sağlamıştır.3D materyallerin üretiminde çeşitli yazılımlardan yararlanılarak materyel üretilmektedir. Üretilen 3D baskı materyalleri klinik öncesi ve uzmanlık eğitiminde gibi eğitimde, cerrahi planlama, implant ve doku tasarlama gibi sağlık hizmetlerinde ve toksik ilaç kullanımı ve biyo baskı organ üretimi gibi araştırmalarda kullanılmaktadır.3D baskı materyalinin kullanımıyla ilgili farklı görüşler bulunsada özellikle zorlu anatomik ve patolojik koşullarda öğrenmeyi geliştirmesi, uzmanlık eğitiminde yoğun bir eğitime izin vermesi, yükseköğretimde etkin ve proje tabanlı öğrenmede uygulanabilmesi açısından eğitim alanına önemli katkıları vardır. Bu yazıda, 3D baskı üretimi, sağlık ve eğitimdeki kullanım alanları hakkında bilgiler verilecektir.
5
13

REFERENCES

References: 

1. Rengier F, Mehndiratta A, von Tengg-
Kobligk H, Zechmann CM, Unterhinninghofen
R, Kauczor H-U, et al. 3D printing based on
imaging data: review of medical applications.
Int J Comput Assist Radiol Surg [Internet].
2010;5(4):335–41. Available from: http://link.
springer.com/10.1007/s11548-010-0476-x
2. Johnson L, Becker S, Estrada V, Freeman
A. Horizon Report: 2014 Higher Education
[Internet]. 2014. 1-52 p. Available from: http://
www.editlib.org/p/130341/\nhttp://www.editlib.
org/p/130341/report_130341.pdf
3. Ebert LC, Thali MJ, Ross S. Getting in
touch—3D printing in Forensic Imaging.
Forensic Sci Int [Internet]. 2011;211(1-3):e1–6.
Available from: http://linkinghub.elsevier.com/
retrieve/pii/S037907381100209X
4. Mahadevappa M. Search for Isotropic
Resolution in CT from Conventional through
Multiple-Row Detector1. Radiographics.
2002;22:949–62.
5. von Tengg-Kobligk H,Weber T, Rengier F,
Kotelis D, Geisbusch P, BocklerD, Schumacher
H LS. Imagingmodalities for the thoracic aorta.
J Cardiovasc Surg(Torino). 2008;49:429–47.
6. Giesel FL, Hart AR, Hahn HK, Wignall
E, Rengier F, Talanow R, et al. 3D
reconstructions of the cerebral ventricles and
volume quantification in children with brain
malformations. Acad Radiol [Internet]. 2009
Tıp Eğitimi Dünyası / Mayıs-Ağustos 2016 / Sayı 46 12
May [cited 2016 Mar 2];16(5):610–7. Available
from: http://www.sciencedirect.com/science/
article/pii/S1076633208006958
7. Peltola SM, Melchels FPW, Grijpma DW
KM. A review of rapid prototyping techniques
for tissue engineering purposes. A Rev rapid
Prototyp Tech tissue Eng Purp. 2008;40:268–80.
8. Boland T, Xu T, Damon B CX. Application of
inkjet printing to tissue engineering. Biotechnol
J. 2006;1:910–7.
9. Campbell PG W LE. Tissue engineering with
the aid of inkjet printers. Expert Opin Biol Ther.
2007;7:1123–7.
10. Chaban Micah. Eight Common Rapid
Prototyping Mistakes. Rapid made. 2013.
11. Varkey M, Atala A. Organ Bioprinting: A
Closer Look at Ethics and Policies. Wake For J
Law Policy. 2015;691(2013):275–98.
12. Berman PM, Sosna J. Advent of 3D printing
based on MDCT data. European Society Of
Radiology-2009. 2009. p. 5–17.
13. AbouHashem Y, Dayal M, Savanah S, Strkalj
G. Medical Education Online. Med Educ Online
[Internet]. 2015;(20):1–8. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/26198434
14. Wagner JD, Baack B, Brown GA, Kelly J.
Rapid 3-dimensional prototyping for surgical
repair of maxillofacial fractures: a technical
note. J Oral Maxillofac Surg [Internet]. 2004 Jul
[cited 2016 Mar 2];62(7):898–901. Available
from: http://www.sciencedirect.com/science/
article/pii/S0278239104003076
15. Guarino J, Tennyson S, McCain G, Bond L,
Shea K, King H. Rapid prototyping technology
for surgeries of the pediatric spine and pelvis:
benefits analysis. J Pediatr Orthop [Internet].
2007;27(8):955–60. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/18209623
16. Hurson C, Tansey A, O'Donnchadha
B, Nicholson P, Rice J, McElwain J. Rapid
prototyping in the assessment, classification and
preoperative planning of acetabular fractures.
Injury. 2007;38(10):1158–62.
17. Giesel FL, Mehndiratta A, von Tengg-
Kobligk H, Schaeffer A, Teh K, Hoffman EA,
et al. Rapid prototyping raw models on the
basis of high resolution computed tomography
lung data for respiratory flow dynamics.
Acad Radiol [Internet]. 2009 Apr [cited 2016
Mar 2];16(4):495–8. Available from: http://
www.sciencedirect.com/science/article/pii/
S1076633208006296
18. Armillotta a, Bonhoeffer P, Dubini
G, Ferragina S, Migliavacca F, Sala G, et
al. Use of rapid prototyping models in the
planning of percutaneous pulmonary valved
stent implantation. Proc Inst Mech Eng H.
2007;221:407–16.
19. Kim MS, Hansgen AR, Wink O, Quaife
RA, Carroll JD. Rapid prototyping: A new tool
in understanding and treating structural heart
disease. Circulation. 2008;117(18):2388–94.
20. Mavili M, Canter H, Saglam-Aydinatay
B, Kamaci S KI. Use of three-dimensional
medical modeling methods for precise planning
of orthognathic surgery. JCraniofac Surg.
2007;18:740–7.
Tıp Eğitimi Dünyası / Mayıs-Ağustos 2016 / Sayı 46 13
21. D’Urso P, Barker T, Earwaker W, Bruce
L, Atkinson R, Lanigan M, Arvier J ED.
Stereolithographic biomodelling in craniomaxillofacial
surgery: a prospective trial. J
Craniomaxillo- fac Surg. 1999;27:30–7.
22. Kido T, Kurata A, Higashino H, Sugawara
Y, Okayama H, Higaki J, et al. Cardiac imaging
using 256-detector row four-dimensional CT:
Preliminary clinical report. Radiat Med - Med
Imaging Radiat Oncol. 2007;25(1):38–44.
23. Meaney J GM. Recent advances in contrastenhanced
magnetic resonance angiography. Eur
Radiol. 2007;17(Suppl 2):B2–6.
24. D’Urso PS, Barker TM, Earwaker WJ,
Bruce LJ, Atkinson RL, Lanigan MW, et al.
Stereolithographic biomodelling in craniomaxillofacial
surgery: a prospective trial. J
Craniomaxillofac Surg. 1999;27(1):30–7.
25. Singare S, Liu Y, Li D, Lu B, Wang J, He S.
Individually prefabricated prosthesis for maxilla
reconstruction. J Prosthodont. 2008;17(2):135–
40.
26. Li Z, Xu SF, Li DC, Sun Z, Zhang T, Lu
JX, et al. Composite artificial semi-knee
joint system. Eur Rev Med Pharmacol Sci.
2014;18(8):1229–40.
27. Dai K, Yan M, Zhu Z SY. Computer-aided
custom-made hemipelvic prosthesis used
in extensive pelvic lesions. J Arthro- plasty.
2007;22:981–6.
28. Harrysson O, Hosni Y NJ. Custom-designed
ortho- pedic implants evaluated using finite
element analysis of patient- specific computed
tomography data: femoral-component case
study. BMC Musculoskelet Disord. 8:91.
29. Subburaj K, Nair C, Rajesh S, Meshram
SM, Ravi B. Rapid development of auricular
prosthesis using CAD and rapid prototyping
technologies. Int J Oral Maxillofac Surg.
2007;36(10):938–43.
30. Ciocca L, Mingucci R, Gassino G, Scotti R.
CAD/CAM ear model and virtual construction
of the mold. J Prosthet Dent. 2007;98(5):339–
43.
31. Derby B. Printing and Prototyping
of Tissues and Scaffolds. Science (80- ).
2012;338(November):921–7.
32. Canstein C, Cachot P, Faust A, Stalder AF,
Bock J, Frydrychowicz A, et al. 3D MR flow
analysis in realistic rapid-prototyping model
systems of the thoracic aorta: Comparison with
in vivo data and computational fluid dynamics
in identical vessel geometries. Magn Reson
Med. 2008;59(3):535–46.
33. Taga I, Funakubo A, Fukui Y. Design
and development of an artificial implantable
lung using multiobjective genetic algorithm:
evaluation of gas exchange performance.
ASAIO J. 2005;51(1):92–102.
34. Lambrecht JT, Berndt DC, Schumacher R,
Zehnder M. Generation of three-dimensional
prototype models based on cone beam computed
tomography. Int J Comput Assist Radiol Surg.
2009;4(2):175–80.
35. Üstün Ç. Plastinasyon. bir bilim mi yoksa
garip bir gösteri mi? ADÜ Tıp Fakültesi Derg.
2002;3(1):37–42.

Thank you for copying data from http://www.arastirmax.com