You are here

Deneysel Nefrotik Sendromda Böbrek Dokusunda ve Plazmada Oksidatif Stres Durumu

Renal Tissue and Plasma Oxidative Stress Status in Experimental Nephrotic Syndrome

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In the present study, oxidative system status both in plasma and renal tissue of rats with adriamycin induced experimental rat nephrotic syndrome was investigated. Glutathion peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels in plasma and MDA levels, GSH-Px and superoxide dismutase (SOD) activi¬ ties in kidney homogenates were determined. Plasma MDA levels and tissue SOD activities were significantly higher in nephrotic rats when compared to those of the controls. No correlation was found between plasma and tissue MDA levels while plasma MDA levels of nephrotic rats had positively significant correlations with urinary protein excretion and serum total cholesterol levels. Serum albu¬ min levels showed negatively significant correlations with plasma MDA levels in nephrotic rats. The data suggest that increased oxidative stress in renal tissue seem not to be responsible princi¬ pally for high plasma MDA levels observed in rats with nephrotic syndrome. Nephrotic state has significant contributions to eleva¬ ted plasma MDA levels and severity of nephrotic syndrome is related to the high levels of plasma MDA.
Abstract (Original Language): 
Bu çalışmada, adriamisin ile oluşturulan deneysel sıçan nefrotik sendromunda plazma ve böbrek dokusunda oksidatif sistemin durumu araştırılmıştır. Plazma glutatiyon peroksidaz (GSH-Px) aktivitesi ve malondialdehit (MDA) düzeyleri ile, böbrek homojenatlarında MDA düzeyleri, GSH-Px ve süperoksit dizmutaz (SOD) aktiviteleri çalışılmıştır. Plazma MDA düzeyleri ve doku SOD aktiviteleri kontroller ile karşılaştırıldığında nefrotik sıçanlarda belirgin olarak daha yüksektir. Doku ve plazma MDA düzeyleri arasında belirgin bir ilişki saptanamazken, nefrotik sıçanlarda üriner protein atılımı ve se¬ rum total kolesterol düzeyleri ile plazma MDA düzeyleri belirgin bir pozitif korelasyon içindedir. Nefrotik sıçanlarda serum albumin düzeyleri plazma MDA düzeyleri ile belirgin negatif korelasyon göstermiştir. Bu bulgular, nefrotik sendromlu sıçanlarda saptanan yüksek MDA düzeylerinin esas sorumlusunun artmış renal doku oksidatif stresi olmadığını göstermektedir. Nefrotik durum yüksek plazma MDA düzeylerine belirgin olarak etki ederken, nefrotik sendromun ağırlığı ile plazma MDA düzeylerinin yüksekliği ilişkilidir.

REFERENCES

References: 

1. Halliwell B. The role of oxygen radicals in human disease with particular reference to the vascular system. Haemostasis 1993;23:118-126.
2. Armstrong D. eds. Free radicals in diagnostic medicine. 1994;New York: Plenum Press.
3. Halliwell B. Free radicals, antioxidants and human disease: Curiosity, cause or consequence? Lancet 1994;344:721-724.
4. Betteridge, DJ. What is oxidative stress? Metabolism 2 (Suppl 1) 2000:1-9.
5. Lefer DJ, Granger DN. Oxidative stress and cardiac disease.
Am J Med. 2000;109:315-323.
6. McCord JM. The evolution of free radicals and oxidative
stress. Am J Med. 2000;108:652-659.
7. Alfrey AC. Role of iron and oxygen radicals in the progression of chronic renal failure. Am J Kidney Dis.
1994;23:183-187.
8. Ichikawa I, Kiyama S, Yoshioka T. Renal antioxidant enzymes: Their regulation and function. Kidney Int.
1994;45:1-9.
9. Rajbala A, Sane AS, Zope J, Mishra VV, Trivedi HL. Oxidative stress status in children with nephrotic syndrome. Panminerva Med. 1997;39: 165-168.
10. Turi S, Nemeth I, Torkos A, et al. Oxidative stress and antioxidant defence mechanism in glomerular diseases. Free
Radic Biol Med. 1997;22:161-168.
11. Das UN, Mohan IK, Raju TR. Effects of corticosteroids and ei-cosapentaenoic acid/docosahexaenoic acid on pro-oxidant and antioxidant status and metabolism of essential fatty acids in patients with glomerular disorders. Prostaglandins Leukot
Essent Fatty Acids 2001;65:197-203.
12. Fydryk J, Jacobson E, Kurzawska O, et al. Antioxidant status of children with steroid sensitive nephrotic syndrome.
Pediatr Nephrol. 1998;12:751-754.
13. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.
Diabetes 1999;48:1-9.
14. Mocan H, Aksoy A, Uydu HA, Mocan MC. Oxidative damage of erythrocyte membrane in nephrotic syndrome. Pediatr
Nephrol. 1999;13:326-332.
15. Bulucu, F, Vural A, Aydın A, Sayal A. Oxidative stress status in adults with nephrotic syndrome. Clin Nephrol.
2000;53:169-173.
16. Kinra S, Rath B, Kabi BC. Indirect quantification of lipid pe-roxidation in steroid responsive nephrotic syndrome. Arch
Dis Child. 2000;82:76-78.
17. Kuroda M, Asaka S, Tofuku Y, Takeda R. Serum antioxidant activity in uremic patients. Nephron 1985;41:293-298.
18. Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG.
Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest. 1986;77:762-767.
19. Aydın A, Orhan H, Sayal A, Ozata M, Sahin G, Isimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem.
2001;34:65-70.
20. Richard MJ, Arnaud J, Jurkowitz C, et al. Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure. Nephron 1991;57:10-15.
21. Podracka L, Sasinka M, Racz O, Sipulova A, Böör A. Antioxidant enzyme activity in erythrocytes in children with kidney diseases. Cas Lek Cesk. 1996;135:313-316.
22. Zima T, Tesar V, Rychlik I, et al. The influence of pefloxacine on experimental adriamycin-induced nephrotic syndrome in
rats. Ren Fail. 1996;18:195-199.
23. Zima T, Tesar V, Stipek S, et al. The influence of cyclosporin on lipid peroxidation and superoxide dismutase in adriamycin nephropathy in rats. Nephron 1997;75:464-468.
24. Horie K, Miyata T, Maeda K, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of
diabetic nephropathy. J Clin Invest 1997;15:2995-3004.
25. Zima T, Tesar V, Crkovska J, et al. ICRF-187 (dextrazoxan) protects from adriamycin-induced nephrotic syndrome in
rats. Nephrol Dial Transplant. 1998;13:1975-1979.
26. Van den Branden C, Ceyssens B, De Craemer D, et al. Renal antioxidant enzymes and fibrosis-related markers in the rat adriamycin model. Nephron 2000;86:167-175.
27. Warwick GL, Waller H, Ferns GAA. Antioxidant vitamin concentrations and LDL oxidation in nephrotic syndrome.
Ann Clin Biochem. 2000;37:488-491.
28. Zachwieja J, Bobkowski W, Niklas A, Strzykala K, Maciejewski J. Total antioxidant status (TAS) in children with nephrotic syndrome. Pol Merkur Lek. 2000;8:216-217.
29. Dogra G, Ward N, Croft KD, et al. Oxidant stress in nephrotic syndrome: Comparison of F(2)-isoprostanes and plasma antioxidant potential. Nephrol Dial Transplant. 2001;16:1626-
1630.
30. Skrzep-Poloczek B, Tomasik A, Tarnawski R, et al. Nephrotic origin hyperlipidemia, relative reduction of vitamin E level and subsequent oxidative stress may promote atherosclerosis. Nephron 2001;89:68-72.
31. Bertani T, Poggi A, Pozzoni R, et al. Adriamycin-induced nephrotic syndrome in rats sequence of pathologic events.
Lab Invest. 1982;46:16-23.
32. Hall RL, Wilke WL, Fettman MJ. The progression of adriamy-cin-induced nephrotic syndrome in rats and the effect of cap-
104
Türk
Nefroloj
i Diyaliz ve Transplantasyon Dergisi /Official Journal of the Turkish Society of Nephrology
Deneysel Nefrotik Sendromda Böbrek Dokusunda ve Plazmada Oksidatif Stres Durumu 9
topril. Toxicol Appl Pharmacol. 1986;82:164-174.
33. Wang Z, Wang ZG, Liu Z. Changes of glomerular fixed anionic charge sites in adriamycin nephrosis in rats. Chin
Med J. 1991;104:128-131.
34. Pedraza-Chaverri J, Arevalo AE, Hernandez-Pando R, Larriva-Sahd J. Effect of dietary antioxidants on puromycin aminonucleoside nephrotic syndrome. Int J Biochem Cell
Biol. 1995;27:683-691.
35. Raats CJI, Bakker MAH, van den Born J, Berden JHM.
Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephrotic syndrome. Am Soc
Bioc Mol Bio. 1997;272:26734-26741.
36.
Ohtake
, T., Kimura, M., Nishimura, M. & Hishida, A. Roles of reactive oxygen species and antioxidant enzymes in murine daunomycin-induced nephropathy. J Lab Clin Med.
1997;129:81-88.
37. Korsetz Z, Pomeranz A, Golan E, Bernheim J. Pefloxacin in adriamycin induced nephrotic syndrome in the rat. Nephrol
Dial Transplant. 1997;12:286-288.
38. Thabrew MI, Samarawickrema N, Chandrasena LG, Jayasekera S. Effect of oral supplementation with vitamin E on the oxido-reductive status of red blood cells in normal
mice and mice subject to oxidative stress by chronic administration of adriamycin. Ann Clin Biochem.
1999;36:216-220.
39. Thabrew MI, Samarawickrema NA, Chandrasena LG, Jayasekera S. Protection by garlic against adriamycin induced alterations in the oxido-reductive status of mouse red blood
cells. Phytother Res. 2000;14:215-217.
40. Badary OA, Abdel-Naim AB, Abdel-Wahab MH, Hamada
FMA. The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology
2000;143:219-226.
41. Rangan GK, Wang Y, Harris DC. Induction of proteinuric chronic glomerular disease in the rat (Rattus Norvegicus) by intracardiac injection of doxorubicin hydrochloride. Contemp
Top Lab Anim Sci. 2001;40: 44-49.
42. Tesar V, Zima T, Jirsa M, et al. Influence of losartan and enalapril on urinary excretion of 8-isoprostane in experimental nephrotic syndrome. Med Sci Monit. 2002;8:69-74.
43. Bertolatus JA, Klinzman D, Bronsema DA, Ridnour L, Oberley LW. Evaluation of the role of reactive oxygen species in doxorubicin hydrochloride nephrosis. J Lab Clin
Med. 1991;118:435-445

Thank you for copying data from http://www.arastirmax.com