Canbay, C. A. (2010). The production of Cu-based shape memory alloys and investigation of microstructural, thermal and electrical properties of alloys, Ph. D Thesis, Fırat University, Institute of Science, Elazığ/Turkey (Turkish).
Gómez-Cortés, J., J. San Juan, G. López and M. Nó (2013). "Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films." Thin Solid Films Vol. 544, No. pp. 588-592.
Izadinia, M. and K. Dehghani (2011). "Structure and properties of nanostructured Cu-13.2 Al-5.1 Ni shape memory alloy produced by melt spinning." Transactions of Nonferrous Metals Society of China Vol. 21, No. 9 pp. 2037-2043.
Karagoz, Z. and C. A. Canbay (2013). "Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys." Journal of Thermal Analysis and Calorimetry Vol. 114, No. 3 pp. 1069-1074.
Kato, H., Y. Yasuda and K. Sasaki (2011). "Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite." Acta Materialia Vol. 59, No. 10 pp. 3955-3964.
Kissinger, H. E. (1957). "Reaction kinetics in differential thermal analysis." Analytical chemistry Vol. 29, No. 11 pp. 1702-1706.
Lojen, G., I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec and M. Bizjak (2005).
Turkish Journal of Engineering (TUJE)
Vol. 1, Issue 2, pp. 27-32, September 2017
32
"Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons." Journal of Materials Processing Technology Vol. 162, No. pp. 220-229.
Massad, J. E. and R. C. Smith (2005). "A homogenized free energy model for hysteresis in thin-film shape memory alloys." Thin Solid Films Vol. 489, No. 1 pp. 266-290.
Meng, Q., H. Yang, Y. Liu and T.-h. Nam (2010). "Transformation intervals and elastic strain energies of B2-B19′ martensitic transformation of NiTi." Intermetallics Vol. 18, No. 12 pp. 2431-2434.
Otsuka, K. and X. Ren (2005). "Physical metallurgy of Ti–Ni-based shape memory alloys." Progress in materials science Vol. 50, No. 5 pp. 511-678.
Otsuka, K. and C. Wayman (1998). "Mechanism of shape memory effect and superelasticity." Shape memory materials, No. pp. 27-48.
Ozawa, T. (1970). "Kinetic analysis of derivative curves in thermal analysis." Journal of Thermal Analysis and Calorimetry Vol. 2, No. 3 pp. 301-324.
Pérez-Landazábal, J. I., V. Recarte, V. Sánchez-Alarcos, M. L. Nó and J. S. Juan (2006). "Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys." Materials Science and Engineering: A Vol. 438–440, No. pp. 734-737.
Recarte, V., J. Perez-Landazabal, P. Rodrıguez, E. Bocanegra, M. No and J. San Juan (2004). "Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys." Acta materialia Vol. 52, No. 13 pp. 3941-3948.
Sobrero, C., P. La Roca, A. Roatta, R. Bolmaro and J. Malarría (2012). "Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys." Materials Science and Engineering: A Vol. 536, No. pp. 207-215.
Wang, Z., X. Zu, H. Yu, X. He, C. Peng and Y. Huo (2006). "Temperature memory effect in CuAlNi single crystalline and CuZnAl polycrystalline shape memory alloys." Thermochimica acta Vol. 448, No. 1 pp. 69-72.
Xuan, Q., J. Bohong, T. Hsu and X. Zuyao (1987). "The effect of martensite ordering on shape memory effect in a copper-zinc-aluminium alloy." Materials Science and Engineering Vol. 93, No. pp. 205-211.
Thank you for copying data from http://www.arastirmax.com