You are here

ÖĞRENCILERININ KUME PROBLEMLERINDE SERGILEDIKLERI MODELLEME BECERILERININ INCELENMESI

ANALYSIS OF MODELLING SKILLS OF STUDENTS BY SET PROBLEMS

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.7827/TurkishStudies.5383

Keywords (Original Language):

Abstract (2. Language): 
According to the published report of International Mathematics Teaching Commission (ICM-14, the purpose of the mathematical modelling is to get the students to understand the mathematical concepts better, to teach solving the distinct problems and formulating them, to contribute them to have them recognise their critical and creative properties and develop a positive manner against Mathematics (Blum, 2002). NCTM (2000) emphasizes that the students in the classes should be given opportunities to use various modelling. Because, using mathematical modelling develops the students' critical thinking, imagination and generalization capabilities (NCTM, 2000; Goldin, 2002). Since the solutions of set problems require modelling, it is assessed as an important training tool especially for the students in primary school level to make them gain and develop their modelling capabilities. Deriving from this view, the purpose of this study is to investigate in which level the primary school students use their mathematical modelling capabilities in the process of solving set problems, and how much they become narrow to the solution by modelling while solving a problem. This study has been performed with 21 students who are being trained in 6th class of a secondary school in the city center in North region of Turkey in 2012-2013 academic year. In the research, 4 open ended questions were used. The frequencies regarding the solutions of students and modelling capabilities and percentages were given as a table. The result of the study indicates that the students usually make the modelling correct in the process of solving problems which require modelling in sets, and however they do not have the required mathematical information and capability of for the solution of the problem. It is seen that the students also use the similar modelling as their teachers use while teaching the sets subject in the lesson, and they do the model drawings from memory. Therefore, students compose the required models for the solving of a problem absolutely unconsciously and as they take example by their teachers, from memory.
Abstract (Original Language): 
Uluslararası Matematik Öğretimi Komisyonu'nun (ICMI-14) yayınladığı rapora göre, matematiksel modellemenin amacı, öğrencilerin matematiksel kavramları daha iyi anlamalarını sağlamak, özgün problemleri çözmelerini ve formüle etmelerini öğretmek, eleştirel ve yaratıcı yönlerinin farkına varmalarına ve matematiğe karşı olumlu tutum geliştirmelerine katkı sağlamaktır (Blum, 2002). NCTM (2000) sınıflarda öğrencilerin çeşitli modelleme kullanmaları için fırsatlar verilmesi gerektiğini vurgulamaktadır, çünkü matematiksel modelleme kullanılması öğrencilerin kritik düşünme, soyutlama ve genelleme becerilerini geliştirmektedir (NCTM, 2000; Goldin, 2002). Küme problemleri çözümleri modelleme gerektiren problemler oldukları için özellikle ilköğretim düzeyinde öğrencilere modelleme becerilerinin kazandırılması ve geliştirilmesi için matematik derslerinde önemli bir eğitim aracı olarak da görülmektedir. Bu düşünceden hareketle bu araştırmanın amacı, ilköğretim öğrencilerinin küme problemlerini çözme sürecinde matematiksel modelleme becerilerini ne ölçüde kullanabildiklerini, bir problemi çözerken modellemenin öğrencileri çözüme ne kadar yaklaştırdığını incelemektir. Bu çalışma 2012-2013 öğretim yılında Türkiye'nin kuzeyinde bir ilin merkezindeki bir ortaokulun 6. sınıfında öğrenim gören 21 öğrenci ile gerçekleştirilmiştir. Araştırmada 4 tane açık uçlu soru kullanılmıştır. Öğrencilerin çözümlerine ve modelleme becerilerine ilişkin frekanslar ve yüzdeler tablo halinde belirtilmiştir. Araştırmanın sonucunda öğrencilerin; kümelerde modelleme gerektiren problemleri çözme sürecinde çoğunlukla modellemeleri doğru yaptıklarını, ancak problemin çözümü için gerekli matematiksel bilgi ve beceriye sahip olmadıklarını göstermektedir. Öğretmenin kümeler konusunu derste anlatırken kullandığı modellerin çok benzerlerini öğrencilerin de kullandığı ve model çizimlerini ezberden yaptıkları görülmüştür. Dolayısıyla öğrenciler problemin çözümü için gerekli modelleri tamamen bilinçsiz ve öğretmeninden gördüğünü taklit ederek, ezberden oluşturmaktadırlar.

REFERENCES

References: 

BAKİ, A. (2006). Kuramdan uygulamaya matematik eğitimi. Trabzon: Derya Kitapevi.
BARBOSA, J.C.
(2003)
. What Is Mathematical Modelling? S.J. LAMON ve diğerleri. (Ed.), Mathematical Modelling: A Way Of Life. Chichester: Ellis Horwood, 227-234.
BLUM, W. (2002). "ICMI Study 14: Applications and Modelling in Mathematics Education-Discussion Document." Educational Studies in Mathematics, 51(1/2), 149-171.
BLUM, W. ve D. LEIB. (2007). How Do Students And Teachers Deal With Modelling Problems?
C. Haınes, P. Galbraıth, W. Blum, S. Khan (Ed.), Mathematical Modelling: Ictma 12: Education, Engineering an Economics. 222-231.
BLUM, Werner ve M. NİSS. (1989). Mathematical Problem Solving, Modelling, Applications, and Links to Other Subjects - State, Trends and Issues in Mathematics Instruction. M, NISS,
W, BLUM ve I, HUNTLEY (Ed.), Modelling Applications and Applied Problem Solving.
England: Halsted Pres. 1-19.
GALBRAITH, Peter, GLORİA, Stıllman, JİLL, Brown, IAN, Edwards (2007). Facilitating Middle Secondary Modelling Competencies. C. Haınes, P. Galbraıth, W. Blum, S. Khan (Ed.), Mathematical Modelling: Ictma 12: Education, Engineering an Economics. 130-140.
GOLDİN,
G
. (2002). Representation in Mathematical Learning and Problem Solving. In L. English (Ed.), Handbook of international research in mathematics education (pp. 197-218). Mahwah, NJ: Lawrence Erlbaum.
GRAVEMEIJER, Koeno. (1994). "Developing Realistic Mathematics Education" içinde Koeno, Gravemeijer. (1997). Commentary Solving Word Problems: A Case Of Modelling Learning and Instruction, 7(4), 389-397.
GRAVEMEİJER,
K
. & DOORMAN, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics,39, 111¬129.
GREER, B. (1997). Modeling Reality In Mathematics Classrooms: The Case Of Word Problems. Learning and Instruction, 7, 293-307.
HARRISON, G. A. (2001). "How do teachers and textbook writers model scientific ideas for students?" Reseach in Science Education, 31, 401-435.
IKEDA, Toshikazu. ve MAX Stephens. (2001). The Effects of Students' Discussion in Mathematics Modelling. J.P. Matos, W. Blum, K. Houston ve S.P. Carrıera (Ed.), Modelling and Mathematics education: Ictma 9: Applications in science and teechonology. Chichester: Horwood Publishing, 381-390.
Turkish Studies
International Periodical For the Languages, Literature and History of Turkish or Turkic
Volume 8/8 Summer 2013

c
298
Abdullah Çağrı BİBER - Mahiye YAPICIOĞLU ULAŞ
JUSTİ, S. R.,
&
GILBERT, K. J. (2002). Modelling teachers' views on the nature of modelling and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
KERTİL, M. (2008). Matematik Öğretmen Adaylarının Problem Çözme Becerilerinin Matematiksel Modelleme Sürecinde İncelenmesi. Yüksek Lisans Tezi. İstanbul: Marmara Üniversitesi Eğitim Bilimleri Enstitüsü.
LESH, R., DOERR, H.M., (2003). Foundations of a models and modeling perspective on mathematics teaching, leraning, and problem solving. In R.Lesh & H.M.Doerr (Eds.) Beyond Constructivism: A models & modeling perspective on mathematics problem solving, learning & teaching (sayfa 3-33).
LİNGEFJÂRD, T. (2006). Faces of modelling. Zentralblatt für Didaktik der Mathematik, 38(2), 96¬112.
Milli Eğitim Bakanlığı [MEB] (2005). Ortaöğretim Matematik Dersi Öğretim Programı.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics: An overview. Reston: NCTM.
NİSS, M. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. In: A. Gagatsis, &S. Papastavridis (Eds.), Third mediterranean conference on mathematics education (pp. 115-124). Athens: Hellenic Mathematical Society and Cyprus Mathematical Society
Niss, M., BLUM, W., & GALBRAİTH, P. (2007). Introduction. In: W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 3-32). New York: Springer.
POST, T. R., WACHSMUTH, I., LESH, R., & BEHR M. J. (1985). Order and Equivalence of Rational Number: A Cognitive Analysis. Journal for Research in Mathematics Education,
16(1), 18-36.
VAN DE WALLE, J. A. (2004). Elemantory A Middle School Math: Teaching Developmentally.
Boston: Allyn & Bacon.
VERSCHAFFEL, L., DE CORTE, E. and LASURE, S., (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction 4,
pp. 273-294.
Turkish

Thank you for copying data from http://www.arastirmax.com