You are here

Cr+6 VE Zn+2 METALLERİNİN AKTİF ÇAMUR SİSTEMİNE TOKSİK ETKİLERİ

Toxic Effects of Zn+2 and Cr+6 Metals on Activated Sludge Process

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this study was to investigate toxic effects of Zn+2 and Cr+6 metals on the activated sludge process. A bench-scale continuous completely mixed activated sludge system was operated to investigate the toxic effects of various concentrations of Zn+2 and Cr+6 metals. In the experiments 12, 24, 36, 48, 72 mg/l Zn+2 and 4, 10, 16, 24, 32 mg/l Cr +6 metal concentrations on sludge microorganisms were examined. The effect of Zn+2 and Cr+6 on oxygen uptake rate (OUR) and the IC50 (concentration of a toxicant producing 50% respiration inhibition) values of these two metals were investigated by using a respirometer in the activated sludge system. Experimental results indicated decreasing OUR values with increasing metal concentrations. IC50 values were determined to be 12,04 mg/l for Cr+6 and 44,71 mg/l for Zn+2. Results indicated that Cr+6 was likely to be more toxic for activated sludge processes.
Abstract (Original Language): 
Bu çalışmanın amacı; Zn+2 ve Cr+6 metallerinin aktif çamur prosesi üzerindeki toksik etkisinin incelenmesidir. Zn+2 ve Cr+6 metallerinin çeşitli konsantrasyonlardaki toksik etkisini belirlemek için laboratuar ölçekli sürekli tam karışımlı aktif çamur sistemi işletilmiştir. Aktif çamur prosesinde toksik etkiyi değerlendirmek için 12, 24, 36, 48, 72 mg/l konsantrasyonlarında Zn+2 ve 4, 10, 16, 24, 32 mg/l konsantrasyonlarında Cr+6 metalleri ile çalışılmıştır. Aktif çamur prosesi üzerinde bu metallerin Oksijen Tüketim Hızı (OTH)’na etkileri ve IC50 (%50 solunum inhibisyonu meydana getiren toksik madde konsantrasyonu) değerleri respirometre kullanılarak test edilmiş ve karşılaştırılmıştır. Zn+2 ve Cr+6 metallerinin konsantrasyonlarının artması ile OTH değerlerinin azaldığı gözlenmiştir. Sonuç olarak, IC50 değerinin Zn+2 için 44,71 mg/l ve Cr+6 için 12,04 mg/l olduğu belirlenmiştir. Bu da Cr+6 metalinin aktif çamur sistemine karşı daha toksik olduğunu göstermiştir.
93-102

REFERENCES

References: 

1. Albek Lüle, M., Yetiş, Ü., Gökçay, C. F. (1997) Effects of Ni(II) on respirometric oxygen uptake, Applied
Microbiology and Biotechnology, 48, 636-641.
2. Alkan U., Cindoruk S., Taşdemir Y. and Colby C. (2002) Influence of an aerobic selector on copper and
hexavalent chromium biosorption by activated sludge, J. Chem. Tech. Biotech.,77 (10), 1141-1148.
3. APHA, AWWA, WPCF (1992) Standard Methods for the Examination of Water and Wastewater. American
Public Health Association, 18th Edn. Washington, D.C.
4. Archibald, F., Methot, M., Young, F., Paice, M. G. (2001) A simple system to rapidly monitor activated sludge
health performance, Water Research, 35, 2543-2553.
5. Bagby, M. M. ve Sherrard, J. H. (1981) Combined effects of Cd and Ni on the activated sludge process, Journal
WPCF, 53(11).
6. Bisogni, J. J., Lawrence, A. W. (1971) Relationship between biological solids retention time and settling
characteristics of activated sludge, Water Research, 5, 753-763.
7. Çalışkan, S. (2002) Bakır ve krom metallerinin seçicili ve klasik aktif çamur proseslerine etkileri, Yüksek Lisans
Tezi, Çevre Mühendisliği Bölümü, Uludağ Üniversitesi.
8. Dalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez. M, Hoffmann, C. C., Sales, D.,
Obst U., Christofi N. (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity
of pollutants to activated sludge, Chemosphere, 47, 535–545.
9. de Bel, M., Stokes, L., Upton, J., Watts, J. (1996) Applications of a respirometry based toxicity monitor, Water
Science and Technolog,33(1), 289-296.
10. Eckenfelder, W. W. ve Englande, A. J. (1998) Innovative biological treatment for sustainable development in the
chemical industries, Water Science and Technology, 38 (4-5), 111-120.
11. Gending, C., Domogala, G., Agnoli, F., Pagga, U., Strotmann, U.J. (2003) Evaluation and further development of
the activated sludge respiration inhibition test, Chemosphere, 52, 143-149.
12. Gutierrez, M., Etxebarria, J., Fuentes, L. (2002) Evalution of waste water toxicity: comparetive study between
Microtox and activated sludge oxygen uptake inhibition, Water Research, 36, 919-924.
13. Hu, Z., Chandran, K., Grasso D., Smets B.F. (2004) Comparison of nitrification inhibition by metals in batch and
continuous flow reactors, Water Research, 38, 3949-3959.
14. Juliastuti, S.R., Baeyens, J., Creemers, C., Bixio, D., Lodewyckx (2003) The inhibitory effects of heavy metals
and organic compounds on the net maximum specic growth rate of the autotrophic biomass in activated sludge,
Journal of Hazardous Materials B100, 271-283.
15. Madoni, P., Davoli, D., Gorbi, G., Vesconi, L. (1996) Toxic effect of heavy metals on the activated sludge
protozoan community, Water Research, 30, 135-141.
16. OECD 209 (1993) OECD guidline for testing of chemicals 209. Activated sludge inhibition test.
17. Patterson, J. W., Brezonic, P. L. ve Putnam, H. D. (1969). Sludge activity parameters and their application to
toxicity measurements and activated sludge. 24th PIWC, 127-154.
18. Patterson, J. W. (1985) Industrial Wastewater Treatment Technology. Butterworth Publishers, Stoneham.
19. Pernetti, M., Palma, L., Merli, C. (2003) A real time toxicity bioassay for activated sludge, International Journal
of Chemical Reactor Engineering, 1 (A 17).
20. Rozzi, A., Ficara, E., Cellamare, C. M. and Bortone, G. (1999) Characterization of textile wastewater and other
industrial wastewaters by respirometric and titration biosensors, Water Science and Technology, 40(1), 161–168.
21. Stasinakis, A.S., Thomaidis, N.S., Mamais, D., Papanikolaou, E.C., Tsakon A., Lekkas, T.D. (2003) Effects of
chromium (VI) addition on the activated sludge process, Water Research, 37, 2140-2148.
22. Şimşek, G., Çelebi, S. (1996). Ağır metal karışımlarının bazı bakterilere ve aktif çamura toksik etkisi, I. Uludağ
Çevre Mühendisliği Sempozyumu, Uludağ Üniversitesi, Bursa, Türkiye, 163-164.
23. Ong, S-A., Toorisaka, E., Hirata, M., Hano, T. (2005) The behavior of Ni(II), Cr(III) and Zn(II) in biological
wastewater treatment process, Acta Hidrochim.Hydrobiol., 33(2), 95-103.
24. Wong, K., Zhong, M., Li, X., Lo, W. (1997) A luminesence–based scanning respirometer for heavy metal toxicity
monitoring, Biosensor& Bioelectronics, 12, 125-133.
25. Zarnovsky, L., Derco, J., Kuffa, R., Drtill, M. (1995) The influence of Cd on activated sludge activity. Water
Science and Technology, 30, 235-242.

Thank you for copying data from http://www.arastirmax.com