You are here

DEĞİŞİK GEOMETRİLERDEKİ LAMİNER AKIŞ ALANLARININ KOORDİNAT DÖNÜŞÜMÜ İLE HESAPLANMASI

Prediction of Laminar Flow Fields at Various Geometries with Coordinate Transformation

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, laminar flow fields over slanted and curved surfaces have been investigated numerically. Flow in diffusers with different slope angles, flow over a circular surface and flow in a circular bend have been solved for different boundary conditions, and different Reynolds numbers, performing coordinate transformation from physical domain to computational domain. From these solutions, the velocity fields and the reverse flow region lengths have been predicted. It was seen that the dimensions of the reverse flow region have increased with increasing Reynolds numbers, and flow separation occurs at small Reynolds numbers for increasing slope angle.
Abstract (Original Language): 
Bu çalışmada, eğik ve eğrisel yüzeyler üzerinden laminer akış alanları sayısal olarak incelenmiştir. Fiziksel alandan hesap alanına koordinat transformasyonu gerçekleştirilerek, eğrisel yüzey üzerinden akış, yayıcı ve dairesel dirsek içinden akış alanları farklı Reynolds sayılarında değişik sınır şartları için çözülmüştür. Bu çözümlerden hız alanları ve ters akış bölgelerinin uzunlukları hesaplanmıştır. Artan Reynolds sayısı ile birlikte ters akış bölgesi boyutlarının arttığı, artan eğim açısı ile akış ayrılmasının daha küçük Reynolds sayılarında gerçekleştiği görülmüştür.
105-117

REFERENCES

References: 

1. Anderson, D.A., Tannehill, J.C., Pletcher, R.H. (1984) Computational Fluid Mechanics and Heat Transfer,
Hemisphere Publishing Corporation, New York.
2. Baghlani, A., Talebbeydokhti, N., Abedini, M.J. (2008) A Shock-Capturing Model Based on Flux-Vector
Splitting Method in Boundary-Fitted Curvilinear Coordinates, Applied Mathematical Modelling, 32, 249-
266.
3. Cheng, K.C., Lın, R.C., Ou, J.W. (1976) Fully Developed Laminar Flow in Curved Rectangular Channels,
Transactions of the ASME - Journal of Fluid Engineering, 41-48.
4. Chiu, C.P., Wu, T.S. (1990) Study of Air Motion in Reciprocating Engine Using an Algebraic Grid Generation
Technique, Numerical Heat Transfer, Part A, 17, 309-327.
5. Fletcher, C.A.J. (1990) Computational Techniques for Fluid Dynamics - I, Second Edition, Springer-Verlag,
Berlin.
6. Ge, L., Sotiropoulos, F. (2007) A Numerical Method for Solving the 3D Unsteady Incompressible Navier-
Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational
Physics, 225, 1782-1809.
7. Hille, P., Vehrenkamp, R., Schulz-Dubois, E.O. (1985) The Development and Structure of Primary and Secondary
Flow in a Curved Square Duct, Journal of Fluid Mechanics, 151, 219-241.8. Hodge, J.K., Stone, A.L., Miller, T.E. (1978) Numerical Solution for Airfoils Near Stall in Optimized
Boundary-Fitted Curvilinear Coordinates, AIAA Journal, 17 (5), 278-284.
9. Hoffmann, K.A. (1989) Computational Fluid Dynamics for Engineers, Engineering Education System, Austin,
Texas.
10. Humphrey, J.A.C., Taylor, A.M.K., Whitelaw, J.H. (1977) Laminar Flow in a Square Duct of Strong Curvature,
Journal of Fluid Mechanics, 83 (3), 509-527.
11. Karki, K.C., Patankar, S.V. (1988) Calculation Procedure for Viscous Incompressible Flows in Complex
Geometries, Numerical Heat Transfer, 14, 295-307.
12. Liu, Z., Liu, Z., Liu, Z., McCormick, S. (1994) Multilevel Methods for Temporal and Spatial Flow Transition
Simulation in a Rough Channel, International Journal for Numerical Methods in Fluids, 19, 23-40.
13. Maliska, C.R., Raithby, G.D. (1984) A Method for Computing Three Dimensional Flows Using Non-
Orthogonal Boundary-Fitted Co-ordinates, International Journal for Numerical Methods in Fluids, 4, 519-
537.
14. Mobley, C.D., Steward, R.J. (1980) On The Numerical Generation of Boundary - Fitted Orthogonal Curvilinear
Coordinate Systems, Journal of Computational Physics, 34, 124-135.
15. Mori, Y., Uchida, Y., Ukon, T. (1971) Forced Convective Heat Transfer in a Curved Channel with a Square
Cross Section, International Journal of Heat and Mass Transfer, 14, 1787-1805.
16. Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York .
17. Schlichting, H. (1990) Boundary-Layer Theory, Seventh Edition, McGraw-Hill Book Co., New York.
18. Shao, X., Wang, H., Chen, Z. (2003) Numerical Modeling of Turbulent Flow in Curved Channels of Compound
Cross-Section, Advances in Water Researches, 26, 525-539.
19. Shyy, W., Tong, S.S., Correa, S.M. (1985) Numerical Recirculating Flow Calculation Using a Body-Fitted
Coordinate System, Numerical Heat Transfer, 8, 99-113.
20. Smith, K.M., Cope, W.K., Vanka, S.P. (1993) A Multigrid Procedure for Three-Dimensional Flows on Non-
Orthogonal Collocated Grids, International Journal for Numerical Methods in Fluids, 17, 887-904.
21. Taylor, A.M.K.P., Whitelaw, J.H., Yianneskis, M. (1982) Curved Ducts with Strong Secondary Motion :
Velocity Measurements of Developing Laminar and Turbulent Flow, Transactions of the ASME - Journal of
Fluid Engineering, 104, 350-359.
22. Thompson, J.F., Thames, F.C., Mastin, C.W. (1974) Automatic Numerical Generation of Body-Fitted Curvilinear
Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies, Journal
of Computational Physics, 15, 299-319.
23. Van Doormaal, J.P., Raithby, G.D. (1984) Enhancements of the Simple Method for Predicting Incompressible
Fluid Flows, Numerical Heat Transfer, 7,147-163.

Thank you for copying data from http://www.arastirmax.com