You are here

OTOMOBİL ÖN TAMPON ÇARPIŞMA ANALİZİ VE OPTİMİZASYONU

Crash Analysis of Vehicle Front Bumper and Its Optimization

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The objective of this paper is to investigate the crash energy absorbtion of bumper-crash box system subjected to 40% offset impact loading. Nonlinear finite element model was created and impact test was simulated using Ls-Dyna software. Design of experiment method is used to construct approximated design functions then size optimization technique is defined to solve the problem of minimization of the total weight. Matlab was used to solve the size optimization problem and optimum sheet thickness value was determined for the impact condition of 40% offset. The study also has shown that crushing initiator geometry on the crash box significantly decrease the maximum initial reaction force but its effect on energy absorbing capacity was relatively small.
Abstract (Original Language): 
Bu makalede, %40 ofsetli çarpışmaya maruz kalan otomobil ön tampon ve darbe emici sisteminin enerji absorbsiyonu incelenmiştir. Bu amaçla lineer olmayan sonlu elemanlar modeli oluşturulmuş ve Ls-Dyna yazılımı ile çözülmüştür. Deney tasarımı metodu ile yaklaşık tasarım fonksiyonları oluşturulmuş ve toplam ağırlığın minimizasyonu için boyut optimizasyon problemi tanımlanmıştır. Optimizasyon problemi Matlab yardımı ile çözülerek %40 ofsetli çarpışma durumu için optimum sac kalınlığı bulunmuştur. Bu çalışma ile ayrıca darbe emici üzerinde oluşturulan katlanma başlatıcı geometrilerin toplam enerji absorbsiyonuna etkisinin oldukça az olmasına karşı, çarpma başlangıcındaki maksimum tepki kuvvetlerini önemli ölçüde düşürdüğü gözlenmiştir.
119-127

REFERENCES

References: 

1. Nakazawa, Y., Tamura, K., Yoshida, M., Tagaki, K., Kano, M. (2005) Development of crash-box for passenger
car with high capability for energy absorption, VIII. International Conference on Computational Plasticity,
Barcelona, Spain.
2. Giess, M., Tomas, J. (1998) Improving safety performance in frontal collisions by changing the shape of
structural components, Proceedings of the 16th International Conference on the Enhanced Safety of Vehicles
(ESV), Ontario, Canada, May 31-June 4.
3. Tarigopula, V., Langseth, M. (2005) An experimental and numerical study of energy absorption in thinwalled
high-strength sections, WIT Transactions on Engineering Structures, 49, 495-507.
4. Yamazaki, K., Han, J. (1999) Maximization of the crushing energy absorption of stiffened and unstiffened
square tubes, 3rd WCSMO, World Congress of Structural and Multidisciplinary Optimization.
5. Lee, S., Hahn, C., Rhee M., Oh J-E., (1999) Effect of triggering on the energy absorption capacity of axially
compressed aluminum tubes, Materials and Design, 20, 31-40.
6. Yamazaki, K., Han, J. (2000) Maximization of the crushing energy absorption of cylindrical shells, Advances
in Engineering Software, 31, 425-434.
7. Chiandussi, G., Avalle, M. (2002) Maximization of the crushing performance of a tubular device by shape
optimisation, Computers and Structures, 80, 2425-2432.
8. Lanzi, L., Castelletti, L.M.L., Anghileri, M. (2004) Multiobjective optimisation of composite absorber shape
under crashworthiness requirements, Composite Structures, 65, 433-441.
9. Zarei, H.R., Kröger, M. (2006) Multiobjective crashworthiness optimization of circular aluminum tubes,
Thin-walled Structures, 44, 301-308.
10. Cho, Y-B., Bae, C-H., Suh, M-W., Sin, H-C. (2006) A vehicle front frame crash design optimization using
hole-type and dent-type crush initiator, Thin-walled Structures, 44, 415-428.

Thank you for copying data from http://www.arastirmax.com