You are here

DİZEL/BİYODİZEL KARIŞIMI İLE ÇALIŞAN BİR MOTORUN PERFORMANS VE EMİSYONLARINI İYİLEŞTİRMEK İÇİN HİDROJEN KULLANILMASI

Use of Hydrogen to Enhance the Performance and Emissions of a Diesel/Biodiesel Blending Fuelled Compression Ignition Engines

Journal Name:

Publication Year:

Abstract (2. Language): 
Researches on usability of alternative fuels like biodiesel, methyl-alcohol, ethyl alcohol, biogas, natural gas, LPG and hydrogen as fuel in internal combustion engines have increased for reason that air pollution has reached threatening levels and it is worried that petroleum based fuels are going to run out. In compression ignition engines alternative fuels can be used as dual- fuel with diesel fuels. Use of diesel- biodiesel mixtures is among widespread dual-fuel systems because of its decreasing emissions. Studies have shown that emissions have decreased considerably especially with B20. But, in spite of biodiesel’s many positive features, negative features like high viscosity and density affect negatively the effect of decreasing emissions. Addition to carbonfree hydrogen with high combustion velocity into diesel biodiesel mixture is thought to further reduce emissions. In this study in a diesel engine working with single-cylinder, four-stroke air-cooled, 1800 rpm constant speed and 25%, 50%, 75% and 100% on load B20 (volumetrically 20% soy biodiesel 80% diesel) the effect of using hydrogen in portions in weight changing between 3% and 14% instead of B20 on specific fuel consumption (SFC), exhaust gas temperature, cylinder pressure, soot, HC, CO, NOx emissions have been analyzed empirically. In conclusion almost in every load situation, it has been ascertained that maximum 14% hydrogen in molar can be used instead of B20 fuel without knocking; with the increase in hydrogen rate SFC, HC, CO and soot emissions decrease considerably while NOx increases a little.
Abstract (Original Language): 
Hava kirliliğinin endişe verici seviyeye ulaşması ve petrol esaslı yakıtların tükeneceği endişesi sebebiyle içten yanmalı motorlarda yakıt olarak biyodizel, metil alkol, etil alkol, biyogaz, doğalgaz, LPG ve hidrojen gibi alternatif yakıtların kullanılabilirliği üzerine araştırmalar yoğunlaşmıştır. Sıkıştırma ile ateşlemeli motorlarda alternatif yakıtlar dizel yakıtı ile birlikte genellikle çift yakıt şeklinde kullanılabilmektedir. Emisyonları iyileştirmesi sebebiyle dizel biyodizel karışımların kullanılması yaygın çift yakıt uygulamalarındandır. Yapılan çalışmalar özellikle B20 ile emisyonların önemli miktarda azaldığını göstermiştir. Ancak biyodizelin bir çok olumlu özelliğine rağmen yüksek viskozite ve yoğunluk gibi olumsuz özellikleri emisyonları düşürme etkisini olumsuz etkilemektedir. Dizel biyodizel karışımına yüksek yanma hızına sahip karbon içermeyen hidrojenin ilavesi ile emisyonların daha da aşağı çekilebileceği düşünülmektedir. Bu çalışmada, tek silindirli, dört zamanlı hava soğutmalı, 1800 d/d sabit hızda ve %25, %50, %75 ve %100 yükte B20 (hacimsel olarak %20 soya biyodizel %80 dizel) ile çalışan bir dizel motorda B20 yerine kütlesel olarak %3 ile %14 arasında değişen oranlarda hidrojen kullanmanın özgül yakıt tüketimi (ÖYT), egzoz gaz sıcaklığı (EGS), silindir basıncı, is, HC, CO ve NOx emisyonlarına etkisi deneysel olarak incelenmiştir. Sonuç olarak hemen hemen her yük durumunda, vuruntu olmaksızın kütlesel olarak B20 yakıtının en fazla %14’ü kadar hidrojen kullanılabildiği, hidrojen oranının artması ile ÖYT’nin, HC, CO ve is emisyonunun önemli miktarda düştüğü NOx’in ise bir miktar arttığı tespit edilmiştir.
87-97

REFERENCES

References: 

1. Abdel-Rahman, AA. (1998) On the emissions from internal-combustion engines: a review, Internatıonal
Journal Of Energy Research; 22,:483-513.
2. Aktaş A., ve Sekmen, Y. (2008) The effects of advance fuel injection on engine performance and exhaust
emissions of a diesel engine fuelled with biodiesel, J. Fac. Eng. Arch. Gazi Univ., 23(1), 199-206.
3. Baranescu, RA., ve Lusco, JJ. (1982) Performance, durability and low temperature evaluation of sunflower
oil as a diesel fuel extender, Vegetable Oil Fuels: Proceedings of the International Conference on Plant and
Vegetable Oils as Fuels, ASAE Publication, Fargo, ND, 312-328, Aug.
4. Bozbas, K. (2008) Biodiesel as an alternative motor fuel: Production and policies in the European Union,
Renewable and Sustainable Energy Reviews, 12, 542–552.
5. Buckel, JW., Chandra, S. (1996) Hot wire ignition of hydrogen—oxygen mixture, Int J Hydrogen Energy;
21(1):39–44.
6. Canakci, M., ve Van Gerpen, JH. (2001) Biodiesel production from oils and fats with high free fatty acids,
Trans. ASAE, 44 (6), 1429-1436.
7. Canakci, M., ve Van Gerpen, JH. (1999) Biodiesel production via acid catalysis, Trans. ASAE, 42(5), 1203-
1210.
8. Canakci, M. (2007) Combustion characteristics of a turbocharged DI compression ignition engine fueled with
petroleum diesel fuels and biodiesel, Bioresource Technology, 98(6), 1167-1175.
9. Carraretto, C., Macor A., Mirandola A., Stoppato A., Tonon S. (2004) Biodiesel as alternative fuel:
Experimental analysis and energetic evaluations, Energy, 29, 2195–2211.
10. Das, LM. (2002a) Near-term introduction of hydrogen engines for automotive and agricultural application,
Int J Hydrogen energy; 27, 479–87.
11. Das, LM. (2002b) Hydrogen engine: research and development (R&D) programmes in Indian Institute of
Technology (IIT), Delhi. Int J Hydrogen Energy, 27, 953–65.
12. D’Ippolito, SA., Yori JC., Iturria ME., Pieck CL., Vera CR. (2007) Analysis of a Two-Step, Noncatalytic,
Supercritical Biodiesel, Production Process with Heat Recovery, Energy & Fuels, 21, 339-346.
13. Demirbas, A. (2007) Biodiesel from sunflower oil in supercritical methanol with calcium oxide, Energy
Conversion and Management, 48, 937-941.
14. Ghazi, AK. (1987) The Dual Fuel Engine, In: Evens RL. Editor. A Chapter in automotive engine alternatives,
Canada: Bleham Press.
15. Gül, K.E. (2006) Hidrojenin içten Yanmalı motorlarda yakıt olarak kullanılması ve performansa etkileri,
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
16. Haragopala Rao, B., Shrivastava, KN., Bhakta, HN. (1983) Hydrogen for dual fuel engine operation, Int J
Hydrogen Energy, 8(5):381–4.
17. He, Y., ve Bao, YD. (2003), Study on rapeseed oil as alternative fuel for a single-cylinder diesel engine,
Renewable Energy, 28, 1447-1453.
18. Homann, H. S. (1985). Conversion facts among smoke measurements, SAE 850267.
19. Huzayyin, AS., Bawady, AH., Rady, MA., Dawood, A. (2004) Experimental evaluation of Diesel engine
performance and emission using blends of jojoba oil and Diesel fuel, Energy Conversion and Management,
45(13-14), 2093-2112.
20. Karaosmanoğlu, F. (1999) Vegetable oil fuels: a review, Energy Sources, 21, 221-231.
21. Naber, JD, Siebers, DL. (1998) Hydrogen combustion under diesel engine conditions, Int. J Hydrogen
Energy; 23(5):363–71.
22. Nwafor, OMI., ve Rice G. (1996) Performance of rapeseed oil blends in diesel engines, Applied Energy,
54(4), 345-354.
23. Nwafor, OMI. (2004) Emission characteristics of diesel engine running on vegetable oil with elevated fuel
inlet temperature, Biomass and Bioenergy, 27(5), 507-511.
24. Masood, M., Ishrat, MM., Reddy, AS. (2007) Computational combustion and emission analysis of hydrogendiesel
blends with experimental verification, Int J Hydrogen Energy, 3, 2539–47.
25. Porpatham, E., Ramesh, A., Nagalingam, B., (2007) Effect of hydrogen addition on the performance of a
biogas fuelled spark ignition engine, International Journal of Hydrogen Energy, 32, 2057 – 2065.
26. Rakopoulos, CD., Antonopoulos, KA., Rakopoulos, DC., Hountalas, DT., Giakoumis EG. (2006) Comparative
performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with
vegetable oils or bio-diesels of various origins, Energy Conversion and Management, 47, (18-19), 3272-
3287.
27. Ramadhas, AS., Jayaraj, S., Muraleedharan, C. (2004), Use of vegetable oil as I.C. engine fuels - A review,
Renewable Energy, 29, 727-742.
28. Romano, S. (1982) Vegetable oils - a new alternative, Vegetable Oil Fuels: Proceedings of the International
Conference on Plant and Vegetable Oils as Fuels, ASAE Publication, Fargo, ND, 106-116Aug.
29. Sahoo, P.K., Das L.M., Babu M.K.G., Naik S.N. (2007) Biodiesel development from high acid value polanga
seed oil and performance evaluation in a CI engine, Fuel, 86, 448–454.
30. Saravanan, N., Nagarajan, G., Dhanasekaran, C., Kalaiselvan, K.M. (2007) Experimental investigation of
hydrogen port fuel injection in DI diesel engine, International Journal of Hydrogen Energy, 32, 4071 – 4080.
31. Saravanan, N., Nagarajan, G., Narayanasamy, S. (2008a) An experimental investigation on DI diesel engine
with hydrogen fuel, Renewable Energy, 33, 415–421.
32. Saravanan, N., Nagarajan, G., Sanjay, G., Dhanasekaran, C., Kalaiselvan, K.M. (2008b) Combustion analysis
on a DI diesel engine with hydrogen in dual fuel mode, Fuel, 87, 3591–3599.
33. Saravanan, N., Nagarajan, G. (2008c) An Experimental İnvestigation Of Hydrogen-Enriched Air İnduction İn
A Diesel Engine System, International Journal Of Hydrogen Energy, 33, 1769 – 1775
34. Saravanan, N., Nagarajan, G., Kalaiselvan, K.M., Dhanasekaran, C. (2008d) An experimental investigation
on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique, Renewable
Energy 33 422–427.
35. Saravanan, N., Nagarajan, G. (2009) Performance and emission study in manifold hydrogen injection with
diesel as an ignition source for different start of injection, Renewable Energy, 34; 328–334.
36. Senthil Kumar M, Ramesh A, Nagalingam B. (2001) Use of hydrogen and methanol as primary fuels in a
dual fuel engine. XVII National Conference on I.C.Engines and Combustion, India, December.
37. Senthil Kumar, M., Rameshü A, Nagalingamü B. (2002) Hydrogen Induction for improving the performance
of a vegetable oil fueled CI Engine. Proceedings of the International Conference on Waste to Energy, Jaipur,
India.
38. Senthil Kumar, M, Ramesh, A, Nagalingam, B., (2003) Use of hydrogen to enhance the performance of a
vegetable oil fuelled compression ignition engine, International Journal of Hydrogen Energy, 28, 1143 –
1154.
39. Silva, FN., Prata, AS., Teixeria, JR. (2003), Technical feasibility of oleic sunflower methyl ester utilization
in Diesel bus engines, Energy Conversion and Management, 44(18), 2857-2878.
40. Van Gerpen, JH., Peterson, CL., Goering CE. (2007) Biodiesel: An Alternative Fuel for Compression Ignition
Engines, Agricultural Equipment Technology Conference, Louisville, Kentucky, USA, 1-22, 11-14 February.
41. Yori, JC., D’Ippolito, SA., Pieck, CL., Vera, CR. (2007) Deglycerolization of Biodiesel Streams by Adsorption
Over Silica Beds, Energy & Fuels, 21, 347-353.

Thank you for copying data from http://www.arastirmax.com