You are here

SELÜLOZİK ESASLI LİFLERDE FİBRİLLEŞMENİN KOPMA YÜKÜ VE UZAMA ORANI ÜZERİNE ETKİSİ

The Influence of Fibrilation on the Strength Values and Elongation of the Rejenerated Cellulosic Fibres

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, the elongation and strength of viscose, modal, tencel standard and tencel A-100 fibres in alkali solution of NaOH, were measured at both before and after fibrillation with an Instron 4301 test equipment. NUVE ST 402 water bath and NUVE ES 500 cooling type incubator were used during the fibrillation of the fibers. It was found that the breaking loads in all fibrillated fibers were remarkably reduced comparing to the initial conditions. Tencel standard showed the largest reduction with a value of 17,93%, followed by 15,93% in modal, 11,78% in viscose and 10,23% in tencel A-100, respectively. The results also showed that the highest extension ratio after the fibrillation was recorded in modal (21,04%), and then viscose (17,91%) and tencel A- 100 (1,40%) on the contrary, this value decreased by 1,56% in tencel standard. The cross sectional area and surface structure in fibers were also visualised by using scattering electron microscopy (SEM).
Abstract (Original Language): 
Bu çalışmada NaOH içeren alkali solüsyon içerisinde fibrilleştirilmiş viskoz, modal, tencel standart ve tencel A-100 liflerinin, fibrilleşme öncesi ve sonrasında kopma uzaması ve kopma yükü değerleri Instron 4301 test cihazında ölçülmüştür. Liflerin fibrilleştirilmesinde NÜVE ST 402 model su banyosu ile NÜVE ES 500 model soğutmalı inkübütör kullanılmıştır. Fibrilleştirme işlemi sonucunda tüm liflerin başlangıç durumlarına göre kopma dayanımlarında bir azalma meydana gelmiştir. En fazla azalmayı tencel standart (%17,93) göstermiş, bunu sırasıyla modal (%15,43), viskon (%11,78) ve tencel A-100 (%10,23) lifleri takip etmiştir. Fibrileşmeden sonra, kopma uzamasında modalda %21,04, viskozda %17,91, tencel A-100 de ise %1,40 artış olurken, tencel standartda %1,56 azalma tespit edilmiştir. Fibrilasyon öncesi ve sonrası liflerin yüzey yapıları ve kesit alanları da taramalı elektron mikroskobuyla (SEM) gözlemlenmiştir.
121-133

REFERENCES

References: 

1. Abu-Rous, M., Ingolic, E., Schuster, K.C. (2006) Visualisation of The Fibrillar and Pore Morphology of
Cellulosic Fibres Applying Transmission Electron Microscopy, Cellulose,13:411-419
2. Abu-Rous, M., Varga, K., Bechtold, T., Schuster, K.C. (2007) A New Method to Visualize and Characterize
the Pore Structure of TENCEL (Lyocell) and Other Man-Made Cellulosic Fibres Using a Fluorescent Dye
Molecular Probe, Journal of Applied Polymer Science, 106:2083-2091
3. Colom, X. ve Carrillo, F. (2002) Crystallinity Changes in Lyocell and Viscose-Type fibres by caustic treatment,
European Polymer Journal, 38:2225-2230
4. Crawshaw,J. ve Cameron, R.E. (2000) A Small Angle X-Ray Scattering Study of Pore Structure in Tencel
Cellulose Fibres and The Effects of Physical treatments,Polymer,41:4691-4698
5. Crawshaw, J., Bras, W., Mant, G.R., Cameron, R.E. (2002) Simultaneous SAXS and WAXS Investigations
of Changes in Native Cellulose Fiber Microstructure on Swelling in Aqueous Sodium Hydroxide,Journal of
Applied Polymer Science,83(6):1209-1218
6. Kreze, T., Malej, S. (2003) Structural Characteristics of New and Convetional Regenerated Cellulosic Fibers,
Textile Research Journals, 73 (8):675-684
7. Lenz, J., Schurz, J., Wrentschur, E. (1993) Properties and Structure of Solvent-Spun and Viscose-Type Fibres
in The Swollen State,Colloid Polymer Science,271:460-468
8. Nemec,A. (1994) Fibrillation of Cellulosic Materials-Can Previous Literature offer Solution, Lenzinger Berichte,
9:69-72
9. Nicolai, M., Nechwatal, A., Mieck, K.P. (1996) Textile Crosslinking Reactions to Reduce the Fibrillation
Tendency of Lyocell Fibers,Textile Research Journals, 66 (9):575-580
10. Okubayashi, S., Griesser, U.J., Bechtold, T. (2005) Moisture Sorption/Desorption Behavior of Various
Manmade Cellulosic Fibers,Journal of Applied Polymer Science, 97:1621-1625
11. Öztürk, B.H. ve Beckhtold, T. (2005) Splıttıng Tendency of Cellulosıc Fıbres,Lenzinger Berichte,84:123-129
12. Öztürk, B.H. ve Beckhtold, T. (2008) Splitting Tendency of Cellulosic Fibers. Part 3: Splitting Tendency of
Viscose and Modal Fibers, Cellulose,15:101-109
13. Öztürk, H.B., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, K.C., Mitchell, J.R.,
Bechtold, T., (2009) Changes in The Intra- and Inter-Fibrillar Structure of Lyocell (TENCEL_) Fibers Caused
by NaOH Treatment, Cellulose, 16:37-52
14. Smole, S.M., Persin, Z., Kreze, T., Kleinschek, K.S., Ribitsch, V., Neumayer, S. (2003) X-Ray Study of Pre-
Treated Regenerated Cellulose Fibres, Mat Res Innovat, 7:275-282
15. Şengönül,A.1996.Tekstil Liflerinin Kopma Mekanizmaları.Tekstil Maraton.s.19-30
16. Udemkıchdecha, W., Chıaracorn, S., POTIYARAJ, P. (2002) Relationships Between Fibrillation Behavior of
Lyocell Fibers and Their Physical Properties,Textile Research Journals,72 (11):939-943
17. Woodıngs,C.(2002), Opportunities Arising from the Fibrillation of Lyocell. www.nonwoven.co.uk
18. Zhang, W., Okubayashi, S., Bechtold, T. (2005) Fibrillation Tendency of Cellulosic Fibers—Part 3. Effects
of Alkali Pretreatment of Lyocell Fiber,Carbohydrate Polymers,59:173-179
19. Zhang, H., Shao, H., Hu, X. (2006) Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers,
Journal of Applied Polymer Science,101:1738-1743

Thank you for copying data from http://www.arastirmax.com