You are here

OTOMOBİL KABİNİNDE ISITMA SÜRECİNDE ISI TRANSFER KARAKTERİSTİKLERİNİN FARKLI IŞINIM MODELLERİ KULLANILARAK SAYISAL OLARAK KARŞILAŞTIRILMASI

Numerical Comparison of the Heat Transfer Characteristics in an Automobile Cabin During Heating Period by Using Different Radiation Models

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, comparisons of the heat transfer characteristics in an automobile cabin with different radiation models were performed during transient heating period. In numerical simulations, a virtual manikin with real dimensions and physiological shape was added to the model of the automobile cabin to predict the heat interactions between human body and cabin interior surfaces. Radiation heat transfer characteristics among the interior surfaces of the cabin were computed by using two different radiation models. These models are called DO (Discrete ordinate) radiation model and S2S (Surface-to-surface) radiation model. As a result of these com-putations, we conclude that both Discrete and Surface-to-surface models can be used for calculation of the heat transfer characteristics of the human body in the automobile cabin but these models show difference in terms of computing times. Numerical results were compared to the experimental data and the results of the numerical calculations were in good agreement with the experimental data.
Abstract (Original Language): 
Bu çalışmada, ısıtma sürecinde geçici rejimde farklı ışınım modelleri kullanılarak üç boyutlu otomobil kabini modeline ait ısı transfer karakteristiklerinin karşılaştırılması gerçekleştirilmiştir. Hesaplamalarda, insan vücudunun kabin iç ortamı ile ısıl etkileşimlerini tahmin edebilmek amacıyla otomobil kabinine gerçek vücut ölçüleri ve şekline sahip üç boyutlu sanal insan modeli ilave edilmiştir. Kabin yüzeyleri ve insan vücudu arasın-da gerçekleşen ışınım ile ısı transferi hesaplamaları için iki farklı ışınım modeli kullanılmıştır. Bu modeller ayrık ordinat(DO) ve görüş faktörlerini hesaplanmasını içeren S2S ışınım modelleridir. Çözümlemeler sonucunda her iki ışınım modelinin de otomobil kabininde insan vücudu ısıl karakteristiklerinin hesaplamaları için kullanılabi-leceği ancak hesaplama zamanları açısından farklılıklar gösterdiği sonucuna varılmıştır. Sayısal çözümlemeler sonucunda elde edilen veriler, sayısal çözümlemelerle eş zamanlı yürütülen deneysel çalışmalardan elde edilen verilerle uyum içerisindedir.

REFERENCES

References: 

1. Ambs, R. (2002) Improved Passenger Thermal Comfort Prediction in the Preprototype Phase by Transient Interior CFD Analysis Including Mannequins, SAE Technical Paper Series 2002–01–0514.
2. AroussiI, A. and Aghil. S. (2000) Characterisation of the flow field in a passenger car model, Optical Diag-nostics in Engineering, 4 (1): 1–15.
3. ASHRAE (1992) Thermal environmental conditions for human occupancy, ANSI/ASHRAE Standard 55–1992.
4. ASHRAE (1997) Handbook-Fundamentals, chapter 8, Atlanta: American Society of Heating Refrigeration and Air-Conditioning Engineers.
5. Chen, Q. (1999) Comparison of different k–e models for indoor airflow computations, Part B, Fundamen-tals Numerical Heat Transfer 28 (3) 353–369.
6. Choudhury, D. (1993) Introduction to the Renormalization Group Method and Turbulence Modelling, Flu-ent Inc. Technical Memorandum TM-107.
7. Costa, J. J. , Oliveira, L. A., ve Blay, D., (1999) Test of Several Versions for the k–ε Type Turbulence Modeling of Internal Mixed Convection Flows, Int. J. Heat and Mass Transfer, vol. 42, no. 23, pp. 4391–4409.
8. FLUENT 6 (2006) User’s guide, Lebanon, NH 03766, USA, Fluent Inc.
9. Jonsson, J. (2007) Including solar load in CFD analysis of temperature distribution in a car pasenger com-partment, Master’s Thesis, 2007:128 CIV.
10. Kaynaklı, Ö. ve Kılıç, M. (2005) An Investigation of Thermal Comfort Inside an Automobile During the Heating Period, Applied Ergonomics, 36: 301–312.
11. Kılıç, M. ve Sevilgen, G. (2008) Modelling airflow, heat transfer and moisture transport around a standing human body by computational fluid dynamics, International Communications in Heat and Mass Transfer, 35(9):1159–1164.
12. Kılıç M., ve Sevilgen, G. (2009) Evaluation of Heat Transfer Characteristics in an Automobile Cabin with a Virtual Manikin During Heating Period, Numerical Heat Transfer, Part A: Applications, 56: 515–539.
13. Kılıç M. ve Sevilgen G. (2011) The effects of using different type of inlet vents on the thermal characteris-tics of the automobile cabin and the human body during cooling period, International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-011-3594-x.
14. Murthy J. Y. and Mathur S. R. (1998) A Finite Volume Method For Radiative Heat Transfer Using Unst-ructured Meshes. AIAA-98-0860, January.
15. Rugh, J. (2002) Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Sys-tems, SAE Technical Paper Series 2002–01–1956
16. Sevilgen, G. (2010) Otomobil Kabininde Hız ve Sıcaklık Dağılımının Üç Boyutlu Sayısal Analizi, Doktora Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü Enerji Ana Bilim Dalı.
17. Sevilgen, G. ve Kılıç, M. (2010) Transient numerical analysis of airflow and heat transfer in a vehicle cabin during heating period, International journal of vehicle design, 52(1/2/3/4): 144–159.
18. Sevilgen, G. ve Kılıç, M. (2011) Numerical analysis of air flow, heat transfer, moisture transport and ther-mal comfort in a room heated by two-panel radiators ,Energy and Buildings, vol. 43,no.1, January 2011, pp. 137–146.

Thank you for copying data from http://www.arastirmax.com