You are here

YALITIM MALZEMELERİNDE TAKVİYENİN ISIL DAVRANIŞA ETKİSİNİN İNCELENMESİ

The Effect of Reinforcement on the Thermal Behavior of Insulation Materials

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effect of convection and radiation in porous insulation materials on the effective thermal conductivity has been experimentally investigated in terms of the reinforcement. The experiments have been performed on two standard test apparatus and the other experimental setup in which an application is done. For this purpose, the glass wool materials are reinforced with low emissivity and conductive materials, such as stretch nylon, thin foil and white paper, and their thermal effective conductivities are determined. From experimental results, it is observed that the effective thermal conductivity of porous insulation materials reinforced with thin foil is decreased at 0 oC and 10 oC temperatures under the average temperature of 20 oC. The effective thermal conductivity of porous insulation material reinforced with thin foil is decreased up to 9 %. In the applied experimental setup, it found that the warming time of unreinforced ternary glass wool is 28,57 % slower than that of the other reinforced sample. Also, the ETC of glass wool insulation materials improved by using low-reflectivity materials such as stretch nylon and white paper, which are similar to those of the unreinforced glass wool. From these results, it is seen that the radiation is an important mechanism and it can form the effects except for standard behavior.
Abstract (Original Language): 
Bu çalışmada, gözenekli yalıtım malzemelerinde taşınım ve ışınımın efektif ısıl iletkenliğe etkisi takviye açısından deneysel olarak incelenmiştir. Deneyler, iki standart test cihazı yanısıra uygulaması yapılan deney düzeneğinde gerçekleştirilmiştir. Bu amaçla, emisivitesi düşük ve iletken naylon, kağıt, ince folyo türü malzemeler cam yünü malzemelerine takviye edilmiş ve efektif ısıl iletkenlikleri belirlenmiştir. Deneysel sonuçlardan, ince folyo ile desteklenmiş gözenekli yalıtım malzemelerinde 20 oC ortalama sıcaklığının altında 0 oC ve 10 oC sıcaklıklarda efektif ısıl iletkenliğin azaldığı gözlenmiştir. İnce folyo ile takviyelenmiş gözenekli yalıtım malzemesinin efektif ısıl iletkenliği, % 9 kadar azalmıştır. Uygulamalı deney düzeneğinde, takviyesiz üçlü camyününün ısınma süresinin takviyeli numuneninkinden % 28,57 daha yavaş olduğu bulunmuştur. Ayrıca naylon ve kağıt gibi düşük yansıtıcı malzemeleri kullanarak geliştirilen cam yünü yalıtım malzemelerinin efektif ısıl iletkenliği, takviyesiz camyünü sonuçlarıyla benzer bulunmuştur. Bu sonuçlardan, ışınımın önemli bir mekanizma olduğu ve standart davranışın dışında etkiler oluşturabildiği görülmüştür.
95-108

REFERENCES

References: 

1. Grohe, B. (2004) Heat conductivities of insulation mats based on water glass bonded nontextile
hemp or flax fibres. Holz Roh-Werkst, 62, 352–357.
2. Gupta, M., Yang, J. ve Roy, C. (2003) Predicting the effective thermal conductivity of
polydispersed beds of softwood bark and softwood char, Fuel, 82, 395-404.
3. Hütter, E.S., Kömle, N.I. (2008) Determination of the radiative contribution to the effective
thermal conductivity of a granular medium under vacuum conditions. 5th European
Thermal-Sciences Conference, Netherlands, pp 8.
4. Infrared Services Inc. (2010) Çeşitli malzemelerin emisivite değerleri. http://www.infraredthermography.
com.
5. Lambda-MessTechnik Gmbh Dresden (2008) The thermal conductivity measurement
process of guarded hot plate. http://www.lambda-messtechnik.de/.
6. Lim, T.K., Axcell, B.P. ve Cotton, M.A. (2007) Single-phase heat transfer in the high
temperature multiple porous insulation, Applied Thermal Engineering, 27, 1352–1362.
7. Moffat, R.J. 1988. Describing the uncertainties in experimental results. Experimental
Thermal and Fluid Science, 1, 3 - 17.
8. Mohammadi, M. (1998) Heat barrier properties of heterogeneous nonwowen materials,
PhD Thesis, North Carolina State University, p. 174.
9. Ochs, F., Heidemann, W. ve Müller-Steinhagen, H. (2008) Effective thermal conductivity
of moistened insulation materials as a function of temperature, International Journal of
Heat and Mass Transfer, 51, 539–552.
10. Reiss H (1988) Radiative transfer in nontransparent dispersed media. Spri.-Verlag, Berlin.
11. Safavisohi, B., Sharbati, E., Aghanajafi, C., Reza, S. ve Firoozabadi, K. (2009) Finite
difference solution for radiative–conductive heat transfer of a semitransparent
polycarbonate layer, J. of Applied Polymer Science, 112, 3313–3321.
12. Spinnler, M., Winter, E.R.F. ve Viskanta, R. (2004) Studies on high-temperature multilayer
thermal insulations, Int. J. of Heat and Mass Transfer, 47, 1305–1312.
13. Stark, C. ve Fricke, J. (1993) Improved heat-transfer models for fibrous insulations.
International Journal of Heat and Mass Transfer, 36, 617–625.
14. Tseng, C., Yamaguchit, M. ve Ohmorit, T. (1997) Thermal conductivity of polyurethane
foams from room temperature to 20 K, Cryogenics, Cilt 37, 305-312.
15. Tseng, P. ve Chu, H. (2009) An Experimental study of the heat transfer in PS foam
insulation, Heat Mass Transfer, 45, 399–406.
16. Weidenfeld, G., Weiss, Y. ve Kalman, H. (2004) A theoretical model for effective thermal
conductivity (ETC) of particulate beds under compression, Granular Matter, 6, 121–129.
17. Wu, H., Fan, J. ve Du, N. (2007) Thermal energy transport within porous polymer
materials: effects of fiber characteristics, Journal of Applied Polymer Science, 106, 576–
583.
18. Wulf, R., Barth, G. ve Gross, U. (2007) Intercomparison of insulation thermal
conductivities measured by various methods, Inter. Journal of Thermophysics, 28, 1679-
1692.
19. Yuksel, N., Avci, A., ve Kilic, M. (2010) The temperature dependence of effective thermal
conductivity of the samples of glass wool reinforced with aluminium foil, International
Communications in Heat and Mass Transfer, 37, 6, 675-680.
20. Yuksel, N. ve Avci, A. (2010) The present studies on effective thermal conductivities of
porous mediums, Journal of the Faculty of Engineering and Architecture of Gazi
University, 25, 2, 331-346.
21. Yuksel, N., Avci, A., ve Kilic, M. (2012) The effective thermal conductivity of insulation
materials reinforced with aluminium foil at low temperatures , Heat and Mass Transfer, in
press.
22. Yüksel, N. (2010) Gözenekli yapılarda yapı ve işletme parametrelerinin ısı iletim
katsayısına etkisinin incelenmesi, Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri
Enstitüsü.
23. Zerroung, A., Zehar, K. ve Refoufi, L. (2007) “Thermal conductivity models of porous
materials, J. of Engineering and Applied Sciences, 2 (4), 722-727.
24. Zhang, B., Zhao, S. ve He, X. (2008) Experimental and theoretical studies on hightemperature
thermal properties of fibrous insulation, Journal of Quantitative Spectroscopy
& Radiative Transfer, 109, 1309–1324.
25. Zhao, S., Zhang, B. ve He, X. (2009) Temperature and pressure dependent effective thermal
conductivity of fibrous insulation, Inter. Journal of Thermal Sciences, 48, 440–448.

Thank you for copying data from http://www.arastirmax.com