You are here

Köpeklerde Fruktanların Kullanımı

Use of Fructans in Dogs

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Fructans are classified as prebiotic, which is defined as nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve host health. In addition to their intestinal health benefits by increasing beneficial microbial populations, fructans have been shown to decrease fecal odor components, reduce blood cholesterol, prevent or inhibit the occurrence of some types of cancer, enhance vitamin synthesis, increase mineral absorption, and stimulate the immune system. Different forms of fructans can have different physiological effects in dogs. Specific effects may vary due to fructan chain length and/or rate of fermentation. The type of diet utilized (plant-based or animal-based and level of crude protein) and variation among individual animals might greatly affect the efficacy of fructans supplementation. The full beneficial effects of fructans probably will not be experienced unless dietary concentrations are above 0.4% of dry food. In this review, the importance and effects of fructans were emphasized and the studies investigating use of fructans in dogs were summarized.
Abstract (Original Language): 
Fruktanlar prebiyotik niteliğinde olan maddelerdir. Prebiyotikler kalın barsakta bir veya sınırlı sayıda bakteri türünün gelişimini ve/veya aktivitesini uyarma yoluyla konağı olumlu yönde etkileyen sindirilemeyen gıda içeriği olarak tanımlanmaktadır. Fruktanların yararlı mikrobiyal popülasyonu arttırma yoluyla barsak sağlığına olan faydalarına ek olarak dışkı koksunu oluşturan bileşikleri azalttığı, kan kolesterol seviyesini düşürdüğü, bazı kanser tiplerinin oluşumunu engellediği, vitamin sentezini arttırdığı, mineral emilimini yükselttiği ve bağışıklık sistemini uyardığı tespit edilmiştir. Fruktanların farklı formları köpeklerde farklı etkilere sahip olabilmektedir. Fruktanların etkileri zincir uzunluğu ve fermantasyon oranı gibi özelliklerden dolayı değişebilmektedir. Kullanılan diyetin tipi (bitkisel veya hayvansal temelli, ham protein seviyesi) ve köpekler arasında bireysel farklılıklar fruktan ilavesinin etkinliğini değiştirebilmektedir. Fruktanların diyetteki konsantrasyonları kuru mamanın % 0.4’ünün üstünde olmadığı zaman yararlı etkileri görülmemektedir. Bu derlemede fruktanların önemi ve etkileri vurgulanmış olup köpeklerde fruktanların kullanımı ile ilgili araştırmalar özetlenmiştir.
71
76

REFERENCES

References: 

1. Apanavicius, C.J., Powell, K.L., Vester, B.M.,
Karr-Lilienthal, L.K., Pope, L.L., Fastinger,
N.D., Wallig, M.A., Tappenden, K.A., Swanson,
K.S., 2007. Fructan supplementation and
infection affect food intake, fever, and epithelial
sloughing from Salmonella challenge in weanling
puppies. J. Nutr., 137, 1923–1930.
2. Barry, K.A., Hernot, D.C., Middelbos, I.S.,
Francis, C., Dunsford, B., Swanson, K.S., Fahey,
G.C., 2009. Low-level fructan supplementation
of dogs enhances nutrient digestion and modifies
stool metabolite concentrations, but does not alter
fecal microbiota populations J. Anim. Sci., 87,
3244-3252.
3. Beylot, M., 2005. Effects of inulin-type fructans
on lipid metabolism in man and in animal
models. Br. J. Nutr., 93(suppl), S163–S168.
4. Beynen, A.C., Baas, J.C., Hoekemeijer, P.E.,
2002. Faecal bacterial profile, nitrogen excretion
and mineral absorption in healthy dogs fed supplemental
oligofructose. J. Anim. Physiol. Anim.
Nutr., 86, 298-305.
5. Cummings, J.H., Hill, M.J., Bones, E.S., Branch,
W.J., Jenkins, D.J.A., 1979. The effect of meat
protein and dietary fiber on colonic function and
metabolism. II. Bacterial metabolites in feces and
urine. Am. J. Clin. Nutr., 32, 2094–2101.
6. Cummings, J.H., Bingham, S.A., 1987. Dietary
fiber, fermentation and large bowel cancer.
Cancer Surv., 6, 601–621.
7. Delzenne, N.M., Kok N., 2001. Effects of
fructans-type prebiotics on lipid metabolism. Am.
J. Clin. Nutr., 73(suppl), 456S–458S.
8. Flickinger, E.A., Van Loo, J., Fahey, G.C., 2003.
Nutritional responses to the presence of inulin
and oligofructose in the diets of domesticated
animals: A review. Crit. Rev. Food Sci. Nutr., 43,
19–60.
9. Flickinger, E.A., Schreijen, E.M.W.C., Patil,
A.R., Hussein, H.S., Grieshop, C.M., Merchen,
N.R., Fahey, G.C., 2003. Nutrient digestibilities,
microbial populations, and protein catabolites as
affected by fructan supplementation of dog diets.
J. Anim. Sci., 81, 2008-2018.
10. Gibson, G.R., Roberfroid, M.B., 1995. Dietary
modulation of the human colonic microbiota: introducing
the concept of prebiotics. J. Nutr., 125,
1401–1412.
11. Gilliland, S.E., 1990. Health and nutritional
benefits from lactic acid bacteria. FEMS
Microbiol. Rev., 87, 175–188.
12. Hesta, M., Janssens, G.P.J., Debraekeleer, J., De
Wilde, R., 2001. The effect of oligofructose and
inulin on faecal characteristics and nutrient
digestibility in healthy cats. J. Anim. Physiol.
Anim. Nutr., 85, 135-141.
13. Holz, G.G., Kuhtreiber, W.M., Habener, J.F.,
1993. Pancreatic beta-cells are rendered glucosecompetent
by the insulinotropic hormone
glucagon-like peptide–1 (7–37). Nature, 361,
362–365.
14. Hussein, H., Campbell, J., Bauer, L.L., Fahey,
G.C., Hogarth, A., Wolf, B., Hunter, D., 1998.
Selected Fructooligosaccharide Composition of
Pet-Food Ingredients. J. Nutr., 128, 2803S-
2805S.
15. Jenkins, D.J.A., Kendall, C.W.C., Vuksan, V.,
1999. Inulin, oligofructose and intestinal
function. J. Nutr., 129, 1431S–1433S.
16. Komatsu, R., Matsuyama, T., Namba, M.,
Watanabe, N., Itoh, H., Kono, N., Tarui, S., 1989.
Glucagonostatic and insulinotropic action of
glucagon-like peptide 1-(7–36)-amide. Diabetes,
38, 902–905.
17. Lomax, A.R., Calder, P.C., 2009. Prebiotics,
immune function, infection and inflammation: a
review of the evidence Br. J. Nutr., 101, 633–
658.
18. Nauck, M.A., Niedereichholz, U., Ettler, R.,
Holst, J.J., Orskov, C., Ritzel, R., Schmiegel,
W.H., 1997. Glucagon-like peptide 1 inhibition
of gastric emptying outweight its insulinotropic
effects in healthy humans. Am. J. Physiol. –
Endocrinol. Met., 273, E981–E988.
76
19. Ohta, A., Baba, S., Takizawa, T., Adachi, T.,
1994. Effects of fructo-oligosaccharides on the
absorption of magnesium-deficient rat model. J.
Nutr. Sci. Vitaminol., 40, 171-180.
20. Ohta, A., Ohtsuki, M., Hosoro, A., 1998. Dietary
fructo-oligosaccharides prevent osteopenia after
gastrectomy. J. Nutr., 128, 106-110.
21. Propst, E.L., Flickinger, E.A., Bauer, L.L.,
Merchen, N.R., Fahey, G.C., 2003. A doseresponse
experiment evaluating the effects of
oligofructose and inulin on nutrient digestibility,
stool quality, and fecal protein catabolites in
healthy adult dogs. J. Anim. Sci., 81, 3057-3066.
22. Reddy, B.S., Hamid, R., Rao, C.V., 1997. Effect
of dietary oligofructose and inuliln on colonic
preneoplastic aberrant crypt foci inhibition.
Carcinogenesis, 18, 1371–1374.
23. Pierre, F., Perrin, P., Champ, M., 1997. Shortchain
fructo-oligosaccharides reduce the
occurrence of colon tumors and develop gutassociated
lymphoid tissue in Min mice. Cancer
Res., 57, 225-228.
24. Roberfroid, M.B., Van Loo, J.A.E., Gibson, G.R.,
1998. The bifidogenic nature of chicory inulin
and its hydrolysis products J. Nutr., 128, 11 - 19.
25. Roberfroid, M.B., 1998. Dietary fructans. Annu.
Rev. Nutr., 18, 117-143.
26. Roberfroid, M.B., Cumps, J., Devogelaer, J.P.,
2002. Dietary chicory inulin increases wholebody
bone mineral density in growing male rats.
J. Nutr., 132, 3599–3602.
27. Roberfroid, M.B., 2007. Inulin-Type Fructans:
Functional Food Ingredients J. Nutr., 137,
2493S–2502S.
28. Rowland, I.R., Rumney, C.J., Coutts, J.T.,
Lievense, L.C., 1998. Effect of Bifidobacterium
longum and inulin on gut bacterial metabolism
and carcinogen-induced aberrant crypt foci in
rats. Carcinogenesis, 19, 281–285.
29. Sangeetha, P.T., Ramesh, M.N., Prapulla, S.G.,
2004. Production of fructo-oligosaccharides by
fructosyl transferase from Aspergillus oryzae
CFR 202 and Aureobasidium pullulans CFR 77.
Process Biochem., 39, 755-760.
30. Spoelstra, S. F., 1980. Origin of objectionable
odorous components in piggery wastes and the
possibility of applying indicator components for
studying odor development. Agric. Environ., 5,
241-260.
31. Strickling, J.A., Harmon, D.L., Dawson, K.A.,
Gross, K.L., 2000. Evaluation of oligosaccharide
addition to dog diets: Influences on nutrient
digestion and microbial populations. Anim. Feed
Sci. Technol., 86, 205–219.
32. Sunvold, G.D., Fahey, G.C., Merchen, N.R.,
Titgemeyer, E.C., Bourquin, L.D., Bauer, L.L.,
Reinhart, G.A., 1995. Dietary fiber for dogs: IV.
In vitro fermentation of selected fiber sources by
dog fecal inoculum and in vivo digestion and
metabolism of fiber-supplemented diets. J. Anim.
Sci., 73, 1099-1109.
33. Sunvold, G.D., Reinhart, G.A., 1998. Use of
novel fibers in canine gastrointestinal disease.
Proceedings 23. Congress of the World Small
Animal Veterinary Association. Buenos Aires,
Argentina.
34. Swanson, K.S., Grieshop, C.M., Flickinger, E.A.,
Bauer, L.L., Chow, J., Wolf, B.W., Garleb, K.A.,
Fahey, G.C., 2002. Fructooligosaccharides and
Lactobacillus acidophilus modify gut microbial
populations, total tract nutrient digestibilities and
fecal protein catabolite concentrations in healthy
adult dogs. J. Nutr., 132, 3721–3731.
35. Swanson, K.S., Grieshop, C.M., Flickinger, E.A.,
Merchen, N.R., Fahey, G.C., 2002. Effects of
Supplemental Fructooligosaccharides and
Mannanoligosaccharides on Colonic Microbial
Populations, Immune Function and Fecal Odor
Components in the Canine J. Nutr., 132, 1717S–
1719S.
36. Swanson, K.S., Grieshop, C.M., Flickinger, E.A.,
Bauer, L.L., Healy, H.P., Dawson, K.A.,
Merchen, N.R., Fahey, G.C., 2002. Supplemental
fructooligosaccharides and
mannanoligosaccharides influence immune
function, ileal and total tract nutrient
digestibilities, microbial populations and
concentrations of protein catabolites in the large
bowel of dogs. J. Nutr., 132, 980-989.
37. Swanson, K.S., Fahey, G.C., 2004. An assessment
of prebiotic use in companion animal diets.
Supplement to Compendium on Continuing Education
for the Practicing Veterinarian, 26, 34-42.
38. Topping, D.L., 1996. Short-chain fatty acids
produced by intestinal bacteria. Asia Pacific J.
Clin. Nutr., 5, 15–19.
39. Weaver, C.M., Liebman, M., 2002. Biomarkers
of bone health appropriate for evaluating functional
foods designed to reduce risk of osteoporosis.
Br. J. Nutr., 88(suppl), S225–S232.
40. Willard, M.D., Simpson, R.B., Delles, E.K.,
1994. Effects of dietary supplementation of fructooligosaccharides
on small intestinal bacterial
over-growth in dogs. Am. J. Vet. Res., 55, 654-
659.
41. Wright, R.S., Anderson, J.W., Briges, S.R., 1990.
Propionate inhibits hepatocyte lipids synthesis.
Proc. Soc. Exp. Biol. Med., 195, 26–29.
42. Younes, H., Garleb, K., Behr, S., Remesy, C.,
Demigne, C., 1995. Fermentable fibers or
oligosaccharides reduce urinary nitrogen
excretion by increasing urea disposal in the rat
cecum. J. Nutr., 125, 1010-1016.
43. Zentek, J., Marquart, B., Pietrzak, T., Ballevre,
O., Rochat, F., 2003. Dietary effects on
bifidobacteria and Clostridium perfringens in the
canine intestinal tract. J. Anim. Physiol. Anim.
Nutr. (Berl.), 87, 397–407.

Thank you for copying data from http://www.arastirmax.com