You are here

Kardiyovasküler Düzenlemede Nükleus Traktus Solitarius’un Rolü

The Role of Nucleus Tractus Solitarius in the Cardiovascular Regulation

Journal Name:

Publication Year:

Abstract (2. Language): 
Cardiovascular system is always regulated by central mechanisms. Nucleus tractus solitarius (NTS), where afferents of baro- and chemoreceptors terminate, is a nucleus in the medulla oblongata and has very important contribution to the cardiovascular regulation. NTS projects impulses, related with cardiovascular system, to other brain areas involving cardiovascular regulation. NTS regulates the cardiovascular homeostasis by sending excitatory or inhibitory impulses to these cardiovascular brain areas. Lots of neurotransmitter or neuromodulator have role in this cardiovascular effect of NTS. In this review, it is aimed to give knowledge about the role of NTS as a first synaptic brain area for baro- and chemoreceptor afferents in the cardiovascular regulation, and also neurotransmitter or neuromodulator mediated the cardiovascular regulation in NTS.
Abstract (Original Language): 
Kardiyovasküler sistem, merkezi mekanizmalar tarafından sürekli olarak düzenlenmektedir. Baro- ve kemoreseptör afferentlerinin sonlandığı yer olan nükleus traktus solitarius (NTS) kardiyovasküler düzenlemede önemli katkıları olan beyin sapındaki bir nükleustur. NTS, kardiyovasküler sistem ile ilgili aldığı uyarımları, merkezi sinir sistemindeki yine kardiyovasküler düzenlemeye karışan diğer beyin bölgelerine ileterek, o beyin bölgelerinin uyarılmasını ve inhibe edilmesini sağlar ve böylece kardiyovasküler hemostasize katkıda bulunur. Bu etkilerinde, NTS’da birçok nörotransmitter ve nöromodulatör madde rol oynamaktadır. Bu derlemede baro- ve kemoreseptörlerin alınan uyarımların ilk sinaps yaptığı beyin bölgesi olan NTS’un kardiyovasküler düzenlemedeki rolü ve bu düzenlemede aracılık yapan nörotransmitter ve nöromodülatör maddeler hakkında bilgi sunulması amaçlanmıştır.
53
58

REFERENCES

References: 

1. Antunes, F., Cadenas, E., 2000. Estimation of
H2O2 gradients across biomembranes. FEBS
Lett., 475: 121–126 .
2. Averill, D.B., Diz, D.I., 2000.Angiotensin
peptides and baroreflex control of sympathetic
outflow:Pathways and mechanisms of the
medulla oblongata. Brain Researc Bulletin.,
51(2): 119-128.
57
3. Bienert, G.P., Schjoerring, J.K., Jahn, T.P., 2006.
Membrane transport of hydrogen peroxide.
Biochim Biophys Acta., 1758: 994–1003.
4. Boscan, P., Allen, A.M., Paton, J.F., 2001.
Baroreflex inhibition of cardiac sympathetic
outflow is attenuated by angiotensin II in the
nucleus of the solitary tract. Neuroscience., 103:
153–160.
5. Buijs, R.M., Van der Beek, E.M., Renaud, L.P.,
Day, T.A., Jhamandas, J.H. 1990. Oxytocin
localization and function in the A1 noradrenergic
cell group: ultrastructural and
electrophysiological studies. Neuroscience.,
39(3): 717-725.
6. Callahan, M.F., Kirby, R.F., Cunningham,J.T., et
al., 1989. Central oxytocin systems may mediate
a cardiovascular response to acute stress in rats.
Am J Physiol., 256(5 Pt 2): H1369- H1377.
7. Cardoso, L.M., Colombari, D. S.A., Menani, J.
V., Toney, G.M., Chianca Jr, D. A., Colombari
E., 2009. Cardiovascular responses to hydrogen
peroxide into the nucleus tractus solitarius. Am J
Physiol Regul Integr Comp Physiol., 297: R462–
R469.
8. Casto, R., Phillips, M.I., 1986. Angiotensin II
attenuates baroreflexes at nucleus tractus
solitarius of rats. Am J Physiol Regul Integr
Comp Physiol., 250: R193–R198.
9. Colombari, E., Sato, M.A., Cravo, S.L.,
Bergamaschi, C.T., Campos, R.R., Lopes, O.U.,
2001. Role of Medulla Oblongata in
hypertension. Hypertension., 38: 549-561.
10. Conte, M.R., 2003. Gender differences in the
neurohumoral control of the cardiovascular
system. Italian Heart Journal: OfficialJournal of
the Italian Federation of Cardiology., 4 (6): 367-
370.
11. Dampney, R.A.L., Coleman, M.J., Fontes,
M.A.P., Hirooka, Y., Horiuchi, J., Polson, J.W.,
Potts, P.D., Tagawa, T., 2001. Central
mechanisms underlying short-term and long-term
regulation of thecardiovascular system.
Proceedings of the Australian Physiological and
Pharmacological Society., 32 (1): 111.
12. Harada, S., Tokunaga, S., Momohara, M.,
Masaki, H., Tagawa, T., Imaizumi, T.,
Tcakeshita, A., 1993. Inhibition of nitric oxide
formation in the nucleus tractus solitarius
increases renal sympathetic nerve activity in
rabbits. Circ. Res., 72, 511-516.
13. Higa, K.T., Mori, E., Viana, F.F., Morris, M.,
Michelini, L.C., 2002. Baroreflex control of heart
rate by oxytocin in the solitaryvagal complex.
Am J Physiol Regul Integr Comp Physiol.,
282(2): R537-R545.
14.King, M.S., 2007. The Role of the Nucleus of the
Solitary Tract in Gustatory Processing. In:
Bradley RM Editor, Chapter 2, PRC Press Boca
Raton, FL, USA.
15. Kiss, A., Mikkelsen, J.D., 2005. Oxytocinanatomy
and functional assignments: a
minireview. Endocr Regul., 39(3):97-105.
16. Li-Hsien, L., 2009. Glutamatergic neurons say
NO in the nucleus tractus solitarii. J Chem
Neuroanat., Nov;38(3):154-65.
17.Machado, B.H., Bonagamba, L.G.H., 1992.
Microinjection of S-nitrosocysteine into the
nucleus tractus solitarii of conscious rats
decreases arterial pressure but Lglutamate does
not. Eur. J. Pharmacol., 221, 179–182.
18. Maier, T., Dai, W.J., Csikos, T., Jirikowski, G.F.,
Unger, T., Culman, J., 1998. Oxytocin pathways
mediate the cardiovascular and behavioral
responses to substance P in the rat brain.
Hypertension., 31(1 Pt 2): 480-486.
19.Matsuguchi, H., Sharabi, F.M., Gordon, F.J.,
Johnson, A.K., Schmid, P.G., 1982. Blood
pressure and heart rate responses to
microinjection of vasopressin into the nucleus
tractus solitarius region of the rat.
Neuropharmacology, 21: 687-693.
20. Matsumura, K., Takuya T., Shuntaro, K., Isao,A.,
Masatoshi, F., 1999. Subtypes of metabotropic
glutamate receptors in the nucleus of the solitary
tract of rats. Brain Research ., 842, 461–468
21. Michelini, L.C., 2007. Differential effects of
vasopressinergic and oxytocinergic preautonomic
neurons on circulatory control: reflex
mechanisms and changes during exercise. Clin
Exp Pharmacol Physiol., 34(4): 369-376.
22. Michelini, L.C., Marcelo, M.C., Amico,J.,
Morris, M., 2003. Oxytocinergic regulation of
cardiovascular function: studies in oxytocindeficient
mice. Am J Physiol Heart Circ Physiol.,
284(6): H2269-H2276.
23. Miura, M., Reis D.J., 1969. Terminations and
secondary projections of carotid sinus nerve in
the cat brain stem. American J Physiology.,
217:142-153.
24. Morris, M., Callahan, M.F., Li P., Lucion, A.B.,
1995. Central oxytocin mediates stress-induced
tachycardia. J Neuroendocrinol., 7(6): 455-459.
25. Olufsen, M., Tran, H., Ottesen, J., 2004.
Modeling cerebral blood flow control during
posture change from sitting to standing.
Cardiovascular Engineering., 4 (1): 47-58.
26. Ogawa, H., Mizusawa, A., Kikuchi, Y., Hida,
W.,Miki, H., Shirato, K., 1995. Nitric oxide as a
retrograde messenger in the nucleus tractus
solitarii of rats during hypoxia. J. Physio.,.
(Lond.) 486, 495–504.
27. Petty, MA., Lang, RE., Unger, T., 1984.
Differential effects of vasopressin (AVP) and
oxytocin (OXT) on the baroreceptor reflex in
58
conscious rats. Clin Exp Hypertens., 6(10-11):
1943-1946.
28. Pilowsky, PM, Goodchild, AK., 2002.
Baroreceptor reflex pathways and
neurotransmitters: 10 years on. J Hypertens., 20:
1675–1688.
29. Polson, J. W., Dampney, R. A. L., Boscan, P.,
Pickering, A. E., Paton, J. F. R. 2007. Differential
baroreflex control of sympathetic drive by
angiotensin II in the nucleus tractus solitarii. Am
J Physiol Regul Integr Comp Physiol 293:
R1954–R1960.
30. Rinaman, L., 1998. Oxytocinergic inputs to the
nucleus of the solitary tract and dorsal motor
nucleus of the vagus in neonatal rats. J Comp
Neurol., 399(1): 101-109.
31. Rogers, R.C., Hermann, G.E., 1985. Dorsal
medullary oxytocin, vasopressin, oxytocin antagonist,
and TRH effects on gastric acid secretion
and heart rate. Peptides., 6(6): 1143-1148.
32. Spyer, K.M., 1981.Neural organization and
control of the baroreceptor reflex. Reviews of
Physiology, Biochemistry and Pharmacology, 88:
23-4.
33. Spyer, K.M., 1990. The central organization of
reflex circulatory control. Central Regulation of
Autonomic Functions New York: Oxford
University PressLoewy D., 168-8
34. Spyer, K.M., 1992. Central nervous control of the
cardiovascular system. Autonomic Failure
Oxford-New York-Tokyo: Oxford University
PressBannister R, Mathias C., 54-77.
35. Strahlendorf, J.C., Strahlendorf, H.K., 1980.
Brain stem and cerebellar mechanisms of
cardiovascular control. Neural Control of
Circulation New York: Academic PressHughes
MJ, Barnes CD, 23-50
36. Sved, A. F., Ito, S., 1999. Pharmacological profile
of the depressor response elicited by injection
of SarThran into the rat rostral ventrolateral
medulla. FASEB J., 13:A213.
37. Talman,W.T., Granata,A.R., Reis, D.J., 1984.
Glutamatergic mechanisms in the nucleus tractus
solitarius in blood pressure control. Fed. Proc.,
43(1):39-44.
38. Vela, C., Diaz-Cabiale, Z., Parrado C., Narvaez,
M., Covenas, R., Narvaez, J.A., 2010.
Involvement of Oxytocin in tha Nucleus Tractus
Solitarii on Central Carduovascular Control:
Interactions with Glutamate. Journal of
Physiology and PharmaCcolOogy, 61, 1, 59-65
39.Verbalis, JG., 1999. The brain oxytocin
receptor(s). Front Neuroendocrinol., 20(2): 146-
156.
40. Yalcin, M., Savcı, V., 2004. Restoration of blood
pressure by centrally injected U-46619,
athromboxane A(2) analog, in hermorrhaged
hypotensive rats: investigation of different brain
areas. Pharmacology, 70(4):177-87.
41.Young, WS., Gainer, H., 2003. Transgenesis and
the study of expression, cellular targeting and
function of oxytocin, vasopressin and their
receptors. Neuroendocrinology.,78(4): 185-203.
42. Zanutto, B.S., Valentinuzzi, M.E., Segura, E.T.,
2010. Neural set point for the control of arterial
pressure: role of the nucleus tractus solitarius.
Zanutto et al. BioMedical Engineering OnLine.,
9-4.
43. Wsol, A., Cudnoch-Jedrzejewska, A.,
Szczepanska-Sadowska, E., Kowalewski, S.,
Puchalska, L., 2008. Oxytocin in the
cardiovascular responses to stress. J Physiol
Pharmacol., 59: 123-127.

Thank you for copying data from http://www.arastirmax.com