You are here

Tavuk Karkas ve İşlenmiş Ürünlerinin Dekontaminasyonunda Güncel Yaklaşımlar

Updated Approaches in Decontamination of Chicken Carcass and Processed Products

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Despite of the existence of modern poultry slaughterhouses and the advanced hygiene and sanitation precautions applied in these facilities, infections and toxications due to consumption chicken meat are still one of the most important public health problems. There are different applications for the decontamination of chicken carcass and processed products. In this article, methods including the various combination of chemical and phys-ical decontamination methods were compiled in light of updated information.
Abstract (Original Language): 
Günümüzde modern kanatlı kesimhanelerinin varlığına ve bu işletmelerde uygulanan yüksek hijyen ve sanitasyon önlemlerine rağmen tavuk etine bağlı infeksiyonlar ve toksikasyonlar hala en önemli halk sağlığı problemlerinin başında gelmektedir. Tavuk eti ve işlenmiş ürünlerinin dekontaminasyonu konusunda farklı uy-gulamalar bulunmaktadır. Bu makalede kimyasal, fiziksel dekontaminasyon metotları ile bu metotların farklı kombinasyonlarını içeren yöntemler güncel bilgiler ışığında derlenmiştir.
53
58

REFERENCES

References: 

1. Anonymous. 2012. Ozone use for surface sanita-tion. http://www.ozonesolutions.com/Ozone_use_for_Surface_Sanitation.html
2. Bacon, R.T., Belk, K.E., Sofos, J.N., Clayton, R.P., Reagan, J.O., Smith, G.C., 2000. Microbial
56
population on animal hides and beef carcasses at different stages of slaughter in plants employing multiple-squential interventions for decontamina-tion. J. Food Protec., 63, 1080-1086.
3. Bilgili, S.F., Conner, D.E., Pinion, J, L., Tamblyn, K.C., 1998. Broiler skin color as affec-ted organic acid: influence concentration and method of application. Poultry Sci., 77, 751-757.
4. Cho, M., Chung, H., Choi, W., Yoon, J., 2004. Linear correlation between inactivation of E.coli and OH radical concentration in TiO2 photoca-talytic disinfection. Water Res., 38, 1069-1077.
5. Comninellis, C., Kapalka, A., Malato, S., Par-sons, S.A., Poulios, I., Mantzavinos, D., 2008. Perspective: Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol., 83, 769-776.
6. Cook, A., Odumeru, J., Lee, S., Pollari, F., 2012. Campylobacter, Salmonella, Listeria monocyto-genes, Verotoxigenic Escherichia coli, and Esc-herichia coli prevalence, enumeration, and subtypes on retail chicken breasts with and wit-hout skin. J. Food Prot., 75, 34-40.
7. Dickens, J.A., Lyon, B.G., Whittemore, A.D., Lyon, C.D., 1994. The effect of acetic acid dip on carcass appearence, microbiological quality and cooked breast meat texture and flavor. Poultry Sci., 73, 576-581.
8. Dincer, H. A., Baysal, T., 2004. Decontamination techniques of pathogen bacteria in meat and po-ultry. Crit. Rev. Microbiol., 30, 197–204.
9. Fink, R.G., 2012. RGF’s advanced oxidation technology. http://www.rgf.com/documents/AOT_book.pdf
10. Fink, R.G., Ellis, W., Hart, J.A., Pearsall, C., Rinehimer, S., 2011. A review of the efficacy, safety, and perception of photohydroionization/ advanced oxidation as an anti-microbial versus traditional chlorine and radiation. http://www.rgf.com/published_article_detail.cfm
11. Greer, G., 2005. Bacteriophage control of food-borne bacteria, J. Food Prot., 68, 1102-1111.
12. Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R., Kiwi, J., 2006. Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl. Catal. B., 63, 76-84.
13. Heponiemi, A., Lassi, U., 2012. Advanced oxida-tion processes in food industry wastewater treat-ment – A review, Food Industrial Processes - Methods and Equipment, Dr. Benjamin Valdez (Ed.), 313-338. http://www.intechopen.com/books/food-industrial-processesmethods-and-equ....
14. Hinton, A. Jr., Ingram, K.D., 2005. Microbicidal activity of tripotassium phosphate and fatty acid towards spoilage and patogenic bacteria associa-ted with poultry. J. Food Prot., 68, 1462-1466.
15. Hinton, A. Jr., Cason, J. A., 2008. Bacterial flora of processed broiler chicken skin after successive washings in mixtures of potassium hydroxide and lauric acid. J. Food Prot., 71, 1707-1713.
16. Huffmann, R.D., 2002. Current and future tech-nologies for the decontamination of carcasses and fresh meat. Meat Sci., 62, 285-294.
17. Hudson, J.A., Billington, C., Carey-Smith, G., Greening, G., 2005. Bacteriophages as biocontrol agents in food. J. Food Prot., 68, 426-437.
18. Koohmaraie, M., Arthur,T.M., Bosilevac, J.M., Guerini, M., Schackelford, S.D., Wheeler, T.L., 2005. Post-harvest interventions to redu-ce/eliminate pathogens in beef. Meat Sci., 71, 79-91.
19. Loretz, M., Stephan, R, R., Zweifel, C., 2010. Antimicrobial acticvity of decontamination tre-atments for poultry carcasses: a literature survey. Food Control, 21, 791-804.
20. Mahgoub, S., Sitohy, M., 2013. Comparative prevalence of pathogenic and spoilage microbes in chicken sausages from Egypt and Greece. He-alth., 5, 274-284.
21. Mead, G., 2004. Poultry meat processing and quality, Woodhead Publishing Limited, UK.
22. Northcutt, J. K., Smith, D. P., Musgruve, M .T., Ingram, K. D., Hinton, A. Jr., 2005. Microbiolo-gical impact of spray washing broiler carcasses using different chlorine concentration and water temperatures. Poultry Sci., 84, 1648-1652.
23. Oppenlander, T., 2003. Photochemical purifica-tion of water and air (Advanced Oxidation Pro-cesses (AOPs): Principles, Reaction Mechanisms, Reactor Concepts), Wiley-VCH.
24. Rincón, A.G., Pulgarin, C., 2004. Effect of pH, inorganic ions, organic matter and H2O2 on E. co-li K12 photocatalytic inactivation by TiO2: impli-cations in solar water disinfection. Appl. Catal. B., 51, 283-302.
25. Rodriguez de Ledesma, A.M., Riemann, H.P., Farver, T.B., 1996. Short-time treatment with al-kali and/or hot water to remove common patho-genic and spoilage bacteria from chicken wing skin. J. Food Prot., 59, 746-750.
26. Saini, J.K., 2012. Control strategies for Listeria monocytogenes in ready-to-eat foods and on food contact surfaces. PhD Thesis, Kansas State Uni-versity, Manhattan Kansas.
27. Sallam, K. I., Samejima, K., 2004. Effects of trisodium phosphate and sodium chloride dipping on the microbial quality and shelf life of refrige-rated tray-packaged chicken breasts. Food Sci. Biotechnol., 13, 425–429.
57
28. Sen, M.K.C. 2013, Effect of photocatalytic oxi-dation on aerobic bacteria counts of broiler car-cass, J. Anim. Vet. Adv., (Baskıda).
29. Sinhamahapatra, M., Biswas, S., Das, A.K., Bhattacharyya, D., 2004. Comparative study of different surface decontaminants on chicken qua-lity. Br. Poult. Sci., 45, 624-630.
30. Sirimahachai, U., Phongpaichit, S., Wongnawa, S., 2009. Evaluation of bactericidal activity of TiO2 photocatalysts: a comparative study of labo-ratory-made and commercial TiO2 samples. Songklanakarin J. Sci. Technol., 31, 517-525.
31. Stopforth, J.D., O’Connor, R., Lopes, M., Kotta-palli, B., Hill, W.E., Samadpour, M., 2007. Vali-
dation of individual and multiple sequential in-terventions for reduction of microbial population during processing of poultry carcasses and parts. J. Food Prot., 70, 1393-1401.
32. Tompkins, N. M., Avens, J. S., Kendall, P. A., Salman, M.D., 2008. Effect of boiling water car-cass immersion on aerobic bacteria counts of po-ultry skin and processed ground poultry meat. Zoonoses Public Hlth., 55, 235-241.
33. Vogelpohl, A., S. M. Kim., 2004. Advanced oxidation processes (AOPs) in wastewater treat-ment. J. Ind. Eng. Chem., 10, 33-40.

Thank you for copying data from http://www.arastirmax.com