You are here

Yağlı Diyetle Beslenen Farelerin Karaciğer Dokusunda Magnezyumun Nitrik Oksit, Malondialdehit ve Glutatyon Düzeylerine Etkisi

The effect of Magnesium on Nitric Oxide, Malondialdehyde and Glutathione in Mice Liver Tissue Fed on Fat-Diet

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study which aimed to investigate the effect on glutathione (GSH), nitric oxide (NO) and ma-londialdehyde (MDA) levels of magnesium (Mg) playing a role in many activities for the living organism in liver tissue of mice fed with fat diet, 39 2-month Swiss albino mice were used. Mice were divided into 4 groups by weighing their bodies. Group I was fed with standart pellet food and drinking water, Group II was fed with the diet containing 31.5 % oil and drinking water, Group III was fed with the diet containing 31.5 % oil and drinking water containing 7.5 g/L magnesium sulphate (MgSO4), Group IV was fed with standart pellet food and drinking water containing 7.5 g/L MgSO4 for 12 weeks. After weighing, anesthesia was pased. After euthanasia, 0.5g from every liver tissue pieces were homogenized. The obtained supernatant NO, MDA, GSH and Mg analyzes were performed. At the end of the study, while the difference between the initial and the final weight of Group I, Group II and Group III was significant statistically (p<0.01). Compared to the control group, NO levels of the group fed with a fatty diet increased (p<0.001), and compared to the group fed with standart pellet food and Mg, NO levels of the group fed with a fatty diet and Mg increased (p<0.001). Compared to the control group, it was determined that there was a significant decrease (p<0.05) in the Mg level of the group fed with a fatty, and compared to the group fed with standart pellet food and Mg, it was determined that there was a signifi- cant decrease (p<0,05) in the Mg level of the group fed a fatty diet and Mg. MDA levels increased in the group fed with fat diet and in the group fed with fat diet and Mg, and compared to the control group, GSH levels of the group of fed standard pellet food and Mg significantly increased (p<0.001). Consequently, fat diet caused an increase in MDA and NO levels and a decrease in GSH levels. Depending on a fatty diet, it was reached the conclusion that Mg implementation could use as an alternative method in terms of that increasing NO and MDA levels decrease to normal levels.
Abstract (Original Language): 
Bu çalışmada yağlı diyetle beslenen farelerin karaciğer dokusunda, canlı organizma için birçok faaliyette görev alan magnezyumun nitrik oksit (NO), malondialdehit (MDA) ve glutatyon (GSH) düzeylerine etkisinin araştırılması amacıyla, 39 adet 2 aylık Swiss albino cinsi erkek fare kullanılmıştır. Fareler 4 gruba ayrılarak vü-cut ağırlıkları tartıldı ve kaydedildi. Grup I standart pelet yem ve içme suyu, Grup II % 31.5 yağ içeren pelet yem ve içme suyu, Grup III % 31.5 yağ içeren pelet yem ve Mg ilaveli su, Grup IV standart pelet yem ve Mg ilaveli su ile 12 hafta süreyle beslendi. Vücut ağırlıkları tartıldıktan sonra anestezi işlemi gerçekleştirildi. Ötenazi işle-minden sonra karaciğer dokularından 0.5g parçalar alındı ve homojenize edildi. Elde edilen süpernatantlarda NO, MDA, GSH ve Mg analizleri yapıldı. Çalışmanın sonunda Grup I, Grup II ve Grup III’ün ilk ve son ağırlık-ları arasında istatistiksel olarak anlamlı fark (p<0.01) gözlendi. Yağlı diyet verilen grubun NO düzeyleri kontrol grubuna göre (p<0.001), yağlı diyet ve Mg verilen grubun NO düzeyleri, standart pelet yem ve Mg verilen gruba göre artış(p<0.001) gösterdi. Yağlı diyet verilen grubun Mg düzeyi kontrol grubuna göre (p<0,001), yağlı diyet ve Mg verilen grubun Mg düzeyi standart pelet yem ve Mg verilen gruba göre düşük (p<0.001) bulundu. Yağlı diyet ile beslenen grup ile yağlı diyet ve Mg ile beslenen grupta MDA değeri (p<0,001),standart pelet yem ve Mg verilen grubun GSH düzeyleri kontrol grubuna göre önemli artış (p<0.001) göstermiştir. Sonuç olarak yağlı diyet MDA ve NO düzeylerinde artışa, GSH düzeylerinde de bir azalmaya neden olmuştur. Yağlı diyete bağlı olarak MDA ve NO düzeylerinin normal seviyelere düşürülmesi bakımından Mg uygulaması-nın alternatif bir yöntem olarak kullanılabileceği kanaatine varıldı.
25
30

REFERENCES

References: 

1. Altunkaynak Z. Effects of high fat diet induced
obesity on female rat livers (a histochemical
study). Eur J Gen Med, (2005). 2(3): 100-109.
2. Beutler, E.. Duron, O.. Kelly, B.M. Improved
method for determination of blood glutathione. J.
Lab. Clin Med. (1963). 61: 882-888.
3. Capel ID, Dorrell HM. Abnormal antioxidant
defense in some tissues of congenitally obese mice.
Biochem J. (1994).,219: 41- 49, 14.
4. Choi JW, Pai SH, Kim SK, Ito M, Park CS, Cha
YN. Increases in nitric oxide concentrations correlate
strongly with body fat in obese humans.
Clin Chem. (2001). 47(6):1106-9.
5. Cristol JP, Maggi MF, Guérin MC, Torreilles J,
Descomps B. Nitric oxide and lipid peroxidation.
C R Seances Soc Biol Fil, (1995). 189:797-809.
6. Davì G, Guagnano MT, Ciabattoni G, Basili S,
Falco A, Marinopiccoli M, Nutini M, Sensi S,
Patrono C. Platelet activation in obese women:
role of inflammation and oxidant stress. JAMA.
(2002). 23-30, 288(16): 2008-14.
7. Elizalde M, Rydén M, van Harmelen V, Eneroth
P, Gyllenhammar H, Holm C, Ramel S, Olund A,
Arner P, Andersson K. Expression of nitric oxide
synthases in subcutaneous adipose tissue of nonobese
and obese humans. J Lipid Res (2000).
41: 1244-51.
8. Fearon IM, Faux SP. Oxidative stress and cardiovascular
disease: novel tools give (free) radical
insight. J Mol Cell Cardiol; (2009). 47: 372-81.
9. Galic S, Oakhill JS, Steinberg GR. Adipose tissue
as an endocrine organ. Mol Cell Endocrinol,
(2010). 316: 129-39.
10.Ghosh S, Sulistyoningrum C.D, Glier B.M,
Verchere B.C, Devlin M.A. Altered glutathione
homeostasis in heart augments cardiac lipotoxicity
associated with diet-induced obesity in
mice. J Biolog Chem, (2011). 42483-42493.
11.Guerre-Millo M. Adipose tissue and adipokines:
for better or worse. Diabetes Met. (2004). 30: 13-
9.
12. Günyaktı A. Katı ve sıvı yağ tüketiminin karaciğerde
glutatyon sentezi ve serbest radikal üretimi
üzerine olan etkilerinin araştırılması, Yüksek Lisans
Tezi, Selçuk Üniv Biyokimya (Tıp) AD,
Konya. (2000).
13.Halliwell B, Gutteridge JMC. Free Radicals in
Biology and Medicine, Third Edition, Oxford
Science Publications, (2001). 22- 24.
14.Higashi Y, Sasaki S, Nakagawa K, Kimura M,
Noma K, Sasaki S. Low body mass index is a
risk factor for impaired endothelium-dependent
vasodilation in humans: Role of nitric oxide and
oxidative stress. J Am Coll Cardiol. (2003).
42:256- 63.
15.Higdon JV, Frei B. Obesity and oxidative stress:
a direct link to CVD? Arterioscler Thromb Vasc
Biol. (2003).23: 365-7.
16.Huerta MG, Roemmich JN, Kington ML, Bovbjerg
VE, Wettman AL, Holmes YF, Magnesium
deficiency is associated with insulin resistance in
obese children: Diabetes Care (2005). 28:1175-
81.
17.Kershaw EE, Flier JS. Adipose tissue as an endocrine
organ. J Clin. Endocrinol Met., (2004).
89: 2548-56.
18. Khan NI, Naz L, Yasmeen G. Obesity: an independent
risk factor for systemic oxidative stress.
Pak J Pharm Sci, (2006). 19: 62-5.
19.Kharb S, Singh V. Magnesium deficiency potentiates
free radical production associated with
myocardial infarction. J Assoc Physicians India
(2000). 48:484-5.
20. Lee JS, Lee MK, Ha TY, Bok SH, Park HM,
Jeong KS, Woo MN, Do M, Yeo JY, Choi MS.
Supplementation of whole persimmon leaf improves
lipid profiles and suppresses body weight
gain in rats fed high-fat diet. Food Chem Toxicol,
(2006). 44 (11): 1875-83.
21.Matsubara M, Maruoka S, Katayose S. Inverse
relationship between plasma adiponectin and leptin
concentrations in normal-weight and obese
women. Eur J Endocrinol, (2002). 147: 173-80.
22.Miller, D.D. Minerals. In “Food Chemistry”,
O.R. Fennema (Ed), pp: Marcel Dekker, New
York. (1996). 617-649.
23.Miranda KM., Espey MG., Wink DA., A rapid,
simple spectrophotometric method for simultaneous
detection of nitrate and nitrite. Nitric Oxide.,
(2001).5, 62-71.
24.Olszanecka-Glinianowicz M, Zahorska-
Markiewicz B, Janowska J, Zurakowski A. Serum
concentrations of nitric oxide, tumor necrosis
factor (TNF)-alpha and TNF soluble receptors
in women with overweight and obesity. Met
(2004). 53:1268-73.
25.Özata, M, Mergenb M, Oktenli C, Aydin A,
Sanisoglu SY, Bolu E, Yilmaz M.İ, Sayal A, Isimer
Ozdemir C. Increased oxidative stress and
hypozincemia in male obesity. Clin Biochem.
(2002).35, 8, 627–631.
26. Seyithanoğlu M., Öner-İyidoğan Y., Koçak H.,
Koçak-Toker N ., U ysal M . Y üksek yağlı d iyetle
beslenen farelerin karaciğerinde trigliserid düzeyleri
ve oksidatif stres üzerine enginar yaprağı
ekstresinin etkisi. Tr J.Biochem, (2012). 37.
27.Ryu MH, Cha YS. The effects of a high-fat or
high-sucrose diet on serum lipid profiles, hepatic
acyl-CoA synthetase, carnitine palmitoyltransferase-
I, and the acetyl-CoA carboxylase mRNA
levels in rats. J Biochem Mol Biol, (2003). 36
(3): 312-318.
30
28. Woods S C, D ’alessıo D A, T so P , R ushıng P A,
Clegg D J, B enoıt S C, G otoh K , L ıu M , S eeley
RJ. Consumption of a high-fat diet alters the homeostatic
regulation of energy balance. Physiol
Behavior, (2004). 83 (4): 573-578.
29.Yoshioka T., Kawada K., Shimada T., Mori M.,
Lipid peroxidation in maternal and cord blood
and protective mechanism against activatedoxygen
toxicity in the blood. Am. J. Obstet. Gynecol,
(1979).135, 372-376.
30.Yilmaz A, Coban E, Sari R. The effect weight
loss on the mean platelet volume in obese patients.
Platelets (2007). 18 (3): 212-216.

Thank you for copying data from http://www.arastirmax.com