ISSN: 2277-8713 IJPRBS

ISSN: 2277-8713

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

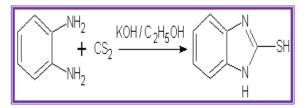
SYNTHESIS AND CHARACTERIZATION OF 2-[1H- BENZIMIDAZOLE- 2YL-SULFANYL]-N-{(E)-[4-(DIMETHYL AMINO) PHENYL] METHYLIDENE} ACETOHYDRAZIDE

RAMESH DHANI

Department of Pharmaceutical Chemistry, Oil Technological Research Institute, Jawaharlal Nehru Technological University Anantapur, Andhra Pradesh, India

Abstract

Accepted Date: Pharmaceutical chemistry began in 16th century and gave 08/10/2012 birth to Medicinal chemistry in the second half of the 17th **Publish Date:** Many important biochemical compounds and century. drugs of natural origin contain heterocyclic ring structures. 27/10/2012 Among these e.g. Carbohydrates, essential amino acids, **Keywords** vitamins, alkaloids, glycosides etc. the presence of Benzimidazole heterocyclic structures in such diverse types of compounds is strongly indicative of the diverse types of the Acetohydrazide pharmacological activity. Diversity of biological response profile has attracted considerable interest of several Imidazole researchers across the globe to explore this skeleton for its N-Hexane assorted therapeutic significance. By using different synthetic methods new benzimidazole derivatives were Ethyl acetate synthesized and further Melting points were determined by Chloroform using Precision melting point apparatus in open capillaries and are uncorrected. The purity of the compounds was Methanol checked by TLC on silica gel G plates using n-Hexane, ethyl acetate (1:3) and methanol: chloroform (1:9) solvent system. The synthesized benzimidazole derivatives were **Corresponding Author** characterized by IR, ¹H NMR spectral analysis. Benzimidazole is a lead nucleus for future developments to get effective Mr. Ramesh Dhani compounds.


INTRODUCTION

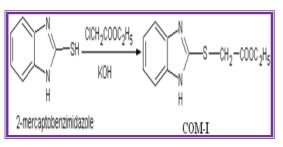
The practice medicinal approach to chemistry has developed from an empirical one involving organic synthesis of new compound, based largely on modification of structures of known activity. According to Manfred Wolf, present development of medicinal chemistry has resistance, stating that "underlying the new age in foundation that includes explosive development of molecular biology since 1960, the advances in physical chemistry and physical organic chemistry has made possible by high speed computers and new powerful analytical methods. Heterocyclic chemistry is the branch of chemistry dealing with the synthesis, properties, and applications of heterocyclics. Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide. In particular, heterocyclic structures form the basis of many pharmaceutical, agrochemical and veterinary products. The benzimidazole contains a phenyl ring fused to an imidazole ring, as indicated in the structure of benzimidazole. The important group of substances has found practical application in a number of fields. Recently in

benzimidazole chemistry has been revived somewhat by the discovery that the 5, 6dimethyl benzimidazole moiety is a part of the chemical structure of vitamin B12.

MATERIALS & METHODS

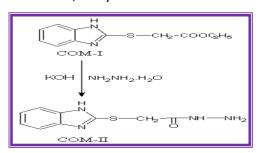
1. Synthesis of 2-mercapto benzimidazole

A mixture of 10.8gm (0.1mol) of ophenylenediamine, 5.65 gm (0.1mol) of potassium hydroxide and 7.67 gm (0.1mole, 6.19ml) of carbon disulfide, 100ml of 95% ethanol and 15 ml of water was taken in a 500ml round bottom flask heated under reflux for three hours. Then 1-1.5 gm of charcoal was added cautiously and the mixture is further heated at the reflux for 10 minutes, the charcoal is removed by filtration. The filtrate is heated to 60-70°C. 100ml of warm water is added, and acidified with dilute acetic acid with good stirring. The product separated as glistening white crystals, and the mixture is placed in a refrigerator for three hours to complete the crystallization. The product is collected on a

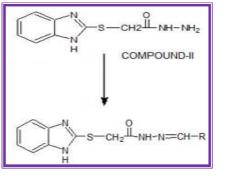

Available Online At www.ijprbs.com

Research Article Ramesh Dhani, IJPRBS, 2012; Volume 1(5): 398-405

Buckner funnel and dried over night at 40° c. The dried product is recrystallised by ethanol the yield is 8.5gm (73%) melting point is 300-305°C.


2. Synthesis of ethyl (1H-benzimidazol-2-yl-sulfanyl) acetate

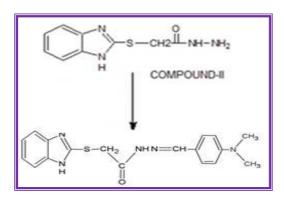
A stirred mixture containing 4.5gm of (0.03mole) of 2-mercaptobenzimidazole, 60ml of ethanol and 1.68gm of (0.03mole) potassium hydroxide was added and heated at 78-80°C for 10-minutes. Then ethyl chloro acetate (3.66ml, 0.03mol) was added in one portion, an exothermic reaction set in causing a temperature rise from 30-40°C. After stirring at 25-30[°]c for 18-hours, the reaction mixture was added to 100gm of ice-water and stirred for 30-minutes at 0- 10° C. The precipitate was collected by filtration washed with water until free of chloride and air dried at 50°c and recrystallised by water the yield is 6 gm (62.25%). melting point is 105° C.


3. Synthesis of 2-(1H-benzimidazol-2ylsulfanyl) acetohydrazide

The mixture of 2-carboxy ethyl thio 1Hbenzimidazole 4gm (0.004mole) and hydrazine hydrate 6ml (0.01mole) are mixed well in a RBF and heated on water bath for 10 min. then dissolved in 60 ml ethanol, the reaction mixture is heated with reflux the reaction mixture is heated with reflux condenser for six hours, cooled to room temperature and the reaction mixture was added to 100gm of ice-water, and kept aside for the crystallization. The colorless crystals are collected by filtration, and recrystallised from water. Melting point is

180-185[°]C: the vield is 60-70%.

4. General procedure for the preparation of Schiff bases Compound


A equimolar solution of carboxyl hydrazide(0.009 mol, 2gm) is dissolved in

ISSN: 2277-8713 IJPRBS

Available Online At www.ijprbs.com

Research Article Ramesh Dhani, IJPRBS, 2012; Volume 1(5): 398-405

10ml of ethanol and to this solution substituted aldehydes in equimolar qty (0.009mol, 0.917) is added with 4-6 drops of glacial acetic acid was added, this reaction mixture is kept under reflux for 8 hours. After cooling to room temperature was added to ice cold water. Compound gets separated as solid filtered, dried and recrystalised with chloroform.

RESULTS AND DISCUSSION

The present study explains the synthesis and characterization of 2-[1Hbenzimidazole-2yl-sulfanyl]-N-{(E)-[4-(dimethylamino) phenyl] methylidene} acetohydrazide. At present studies find the structural-activity relationship (SAR) and to optimize the structure. The synthesized benzimidazol derivative characterized by IR, ¹H NMR spectral data analysis. The purity of the synthesized benzimidazol derivative was checked by (TLC) thin layer chromatography and R_f value was recorded.

CONCLUSION

By this study concluded that to find the structure-activity relationship (SAR) and to optimize the structure of the synthesized new benzimidazol derivative i.e., 2-[1H-benzimidazole-2yl-sulfanyl]-N-{(E)-[4-

(dimethylamino) phenyl] methylidene} acetohydrazide. The compound was characterized by IR, ¹H NMR spectral data, the purity of the compound was checked by TLC and it produces good yield. The compound was confirmed by physicochemical and spectral data analysis.

ACKNOWLEDGEMENT

I am indebted to my parents and my sister for their inspiration and encouragement given to me during this work with deep appreciation for their determination and enthusiasm at each and every front of my life to transform my dreams into reality. I am very thankful and prevail age to my deep sense of gratitude to **Prof. Dr. Sarvesh Kumar Tripathi Ph.D., Director of I.A.M**

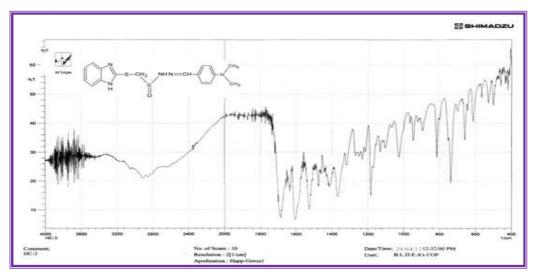


Figure 1 IR Spectra of 2-[1H-benzimidazole-2yl-sulfanyl]-N-{(E)-[4-(dimethylamino) phenyl] methylidene} acetohydrazide

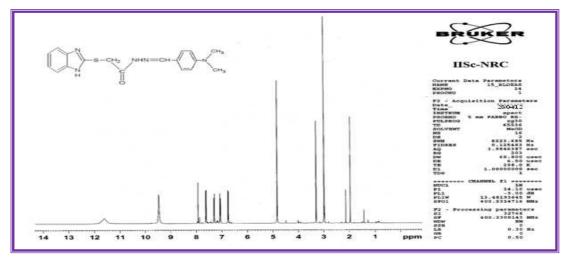


Figure 2 ¹HNMR Spectra of 2-[1H-benzimidazole-2yl-sulfanyl]-N-{(E)-[4-(dimethylamino) phenyl] methylidene} acetohydrazide

PHYSICOCHEMICAL ANALYSIS

Table 1		
Sr. no	2-mercapto benzimidazole	
1.	Mol. Formula	C ₇ H ₆ N ₂ S
2.	Melting Point	300-305°C
3.	% Yield	73%
4.	Solvent system used	hexane: ethyl acetate (1:3)

Table 2

Sr. no	Ethyl (1H-benzimidazol-2-yl-sulfanyl) acetate	
1.	Mol. Formula	$C_{11}H_{12}O_2N_2S$
2.	Melting Point	105°C
3.	% Yield	62.25 %
4.	Solvent system used	hexane: ethyl acetate (1:3)

Table 3			
Sr. no	2-(1H-benzimidazol-2-yl-sulfanyl) acetohydrazide		
1.	Mol. Formula	$C_8H_{11}ON_4S$	
2.	Melting Point	180-185°C	
3.	% Yield	60-70%	
4.	Solvent system used	hexane: ethyl acetate (1:3)	

Research Article
Ramesh Dhani, IJPRBS, 2012; Volume 1(5): 398-405

Sr. no	2-[1H- benzimidazole-2yl-sulfanyl]-N-{(E)-[4-(dimethyl amino)phenyl]methylidene}	
1.	Acetohydrazide Mol. Formula	C ₁₈ H ₁₉ N ₅ OS
2.	Melting Point	248-252°C
3.	% Yield	65%
4.	Mol. Weight	353

Table 4

Table 5		
IR spectral data		
Functional group Group frequency in		
assigned	Wave number (cm ⁻¹)	
(-NH-)	3290,1338	
(>C=O)	1670	
(-C=N-)	1617	
C-S-C	670	
Aromatic ring	3075	

Table 6

¹H NMR Spectral data

Sr. no	Value (δ)	Nature of segment	Туре
1	11.7	Singlet	1H, NH of Benz
2	9.5	Singlet	1 H, NH-N
3	8.0	Singlet	1H, N=CH
4	6.7-7.7	Multiplet	8H, Ar-H
5	4.80	Singlet	2H, S-CH2
6	2.9-3.1	Triplet	6H of N(CH3)2

Available Online At www.ijprbs.com

REFERENCES

1. Ananthnarayan R and Panikar: In Textbook of Microbiology, Ed 5, Orient Longman Publisher 1975: 23.

2. Chakraborthy P: In A Text Book of Microbiology, Ed 1, Orient Longman Publisher, 2000, pp 3-20, 73-78, 378-382.

 E.C. S. Krieg: N. R. In Microbiology, Ed 5, Tata McGraw-Hill Publication, 1986, pp 75-99.

Lindberg P and Mitscher LA: European
Journal of Medicinal Chemistry.1998; 6:
243-73.

5. John B Wright: The chemistry of benzimidazoles. Chemical Reviews.1951; 3(3): 397-541.

6. Day AR: Electronic mechanism of organic synthesis. 1951; 2: 242-243.

 Preston PN: Synthesis Reactions and Spectroscopic properties of benzimidazoles.
Chemical Reviews. 1974; 15: 279-314. Wagner EC and Millett WH: Synthesis of Benzimidazole. Chemistry of Org Synthesis. 1943; 2: 65.

Shriner RL and Robert W Upson:
Synthesis of bis-benzimidazoles from dibasic acids. Journal of Organic Chemistry. 1941; 63(8): 2277.

10. Walther R Von and Kessler A: Journal of Prakt Chemistry. 1906; 174 : 245.

11. Goodman Gilman, Alfred and McGraw-Hill: The Pharmacological Basis of Therapeutics, ed 10, McGraw-Hill Medical Publishing Division, 2001: 1284.

12. Fromtling A: Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents, Ed 7, Porous Barcelona, 1987: 12-25.