ISSN: 2277-8713 IJPRBS

ISSN: 2277-8713

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

ADULTERATION AND SUBSTITUTION IN INDIAN MEDICINAL PLANTS

ANIRBAN ROY, ARINDAM MALLICK, AMRINDER KAUR

IJPRBS-QR CODE

PAPER-QR CODE

Lovely School of Pharmaceutical Sciences (Ayurveda), Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Accepted Date: 05/02/2013 Publish Date: 27/02/2013 Keywords Ayurveda, Adulteration, Substitution, Standardization, Identification

Abstract

Ayurveda is a system of Indian traditional medicine and a form of alternative medicine. In 20th and 21st century people are becoming aware of the potency and side effect of synthetic drugs and so there is an increasing interest in Ayurvedic proprietary medicine. But the adulteration and substitution of the herbs is the burning problem in herbal industry and it has caused a major treat in the research on commercial natural products. The deforestation and extinction of many species and incorrect identification of many plants has resulted in adulteration and substitution of raw drugs. The future development of the Pharmacognostic analysis of herbs is largely depended upon reliable methodologies for correct identification, standardization and quality assurance of Ayurvedic drugs.

Corresponding Author Mr. Anirban Roy

INTRODUCTION

Adulteration it is a practice of substituting the original crude drug partially or fully with other substances which is either free from or inferior in therapeutic and chemical properties or addition of low grade or spoiled drugs or entirely different drug similar to that of original drug substituted with an intention of enhancement of profits¹. A adulteration may also be defined as mixing or substituting the original drug material with other spurious, inferior, defective, spoiled, useless other parts of same or different plant or harmful substances or drug which do not confirm with the official standards. a drug shall be deemed to be adulterated if it consists, in whole or in part, of any filthy, putrid or decomposed substance .² A treatise published two centuries ago (in 1820) on adulterations in food and culinary materials is a proof for this practice as an age-old one¹. Due to adulteration, faith in herbal drugs has declined³. Adulteration in market samples is one of the greatest drawbacks in promotion of herbal products. Many researchers have contributed in checking adulterations and authenticating them ^{4, 5, 6,} $^{7,\ 8,\ 9,\ 10,\ 11}.$ It is invariably found that the

ISSN: 2277-8713 IJPRBS

Adverse Event Reports are not due to the intended herb, but rather due to the presence of an unintended herb ¹². Medicinal plant dealers have discovered the scientific methods in creating adulteration of such a high quality that without microscopic and chemical analysis, it is very difficult to trace these adulterations¹³

Types of Adulterants:

Drugs are generally adulterated or substituted with substandard, inferior or artificial drugs.

Using substandard commercial varieties: Adulterants resemble the original crude drug morphologically, chemically, therapeutically but are sub standard in nature and cheaper in cost. This is the most common type of adulteration ^{1, 2}.

Using superficially similar inferior drugs: Inferior drugs may or may not have any chemical or therapeutic value. They resemble only morphologically, so due to its resemblance they are used as adulterants

Using artificially manufactured substance: The drug is adulterated with the substance which has been prepared artificially. The

artificially manufactured substance resembles the original drug. This method is followed for the costlier drugs ¹.

Using exhausted drug: The same drug is admixed but that drug is devoid of medicinally active substance as it has been extracted already. Mainly volatile oil containing drugs like clove, coriander, fennel, caraway are adulterated by this method. As it is devoid of colour and taste due to extraction, natural colour and taste is manipulated with additives ¹.

Using of synthetic chemicals to enhance natural character: Synthetic chemicals are used to enhance natural character of the exhausted drug. Examples: citral is added to citrus oils like lemon and orange oils¹.

Presence of vegetative matter of same plant: Some miniature plants growing along with the medicinal plants are added due to their colour, odour, and constituents¹.

Harmful adulterants: Some are harmful materials as the adulterant, are collected from market waste materials and admixed with the drug. It is done for the liquid drugs ¹

Adulteration of powders: The drugs which are in the form of powders are frequently adulterated. Examples: dextrin is added in ipecacuanha, exhausted ginger in ginger, red sanders wood in capsicum powder and powdered bark adulterated with brick powder¹.

Reason of adulteration:

Confusion in vernacular names: In Ayurveda, Parpatta refers to Fumaria parviflora. In Siddha, 'Parpadagam' refers to Mollugo pentaphylla. Owing to the similarity in the names in traditional systems of medicine, these two herbs are often interchanged or adulterated or substituted. Because of the popularity of Siddha medicine in some parts of South India, traders in these regions supply *Mollugo pentaphylla* as Parpatta/Parpadaga m and the North Indian suppliers supply *F. parviflora*. These two can be easily identified by the presence of pale yellow to mild brown colored, thin wiry stems and small simple leaves of *Mollugo pentaphylla* and black to dark brown colored, digitate leaves with narrow segments of F. parviflora. Casuarina equisetifolia for Tamarix indica and Aerva

ISSN: 2277-8713 IJPRBS

lanata for *Berginia ciliate* are some other example for adulterations due to confusion in names ¹⁴.

Lack of knowledge about authentic source: Nagakesar is one of the important drugs in Ayurveda. The authentic source is Mesua ferrea. However, market samples adulterated with flowers are of Calophyllum inophyllum. Though the authentic plant is available in plenty throughout the Western Ghats and parts of Himalayas, suppliers are unaware of it. There may also be some restrictions in forest collection. Due to these reasons, C. inophyllum (which is in the plains) is sold as Nagakesar. Authentic flowers can be easily identified by the presence of two-celled ovary whereas in case of spurious flowers they are single celled ¹⁴.

Similarity in morphology: *Mucuna pruriens* is adulterated with other similar Papilionaceae seeds having similarity in morphology. *M. utilis* (sold as white variety) and *M. deeringiana* (sold as bigger variety) are popular adulterants. Apart from this *M. cochinchinensis, Canavalia virosa* an d *C. ensiformis* are also sold in Indian

ISSN: 2277-8713 IJPRBS

markets. Authentic seeds are up to 1 cm in length with shining mosaic pattern of black and brown color on their surface. M. deeringiana and *M. utilis* are bigger (1.5-2)cm) in size. dull While *M. deeringiana* is black and *M. utilis* is white or buff colored ¹⁴.

Lack of authentic plant: Hypericum perforatum is cultivated and sold in European markets. In India, availability of this species is very limited. However, the abundant Indo-Nepal species H. patulum, sold in the name of *H. perforatum*. Market sample is a whole plant with flowers and it is easy to identify them taxonomically. transverse Anatomically, section of *H. perforatum* stem has compressed thin phloem, hollow pith and absence of calcium oxalate crystals. Whereas H. patulum has broader phloem, partially hollow pith and presence of calcium oxalate crystals¹⁴.

Similarity in color: It is well known that with course of time, drug materials get changed to or substituted with other plant species. 'Ratanjot' is a recent day example. According to the suppliers and non-timer forest product (NTFP) contractors, in the past, roots of *Ventilago*

madraspatana were collected from Western Ghats, as the only source of 'Ratanjot'. However, that has not been practiced now. It is clearly known that *Arnebia euchroma var euchroma* is the present source. Similarity is in yielding a red dye, *A. euchroma*

substitutes *V. madraspatana*. Recently *V. madraspatana* is not found in market. Whatever is available in the market, in the name of Ratanjot is originated from *A. euchroma*¹⁴.

Careless collections: Some of the herbal adulterations are due to the carelessness of herbal collectors and suppliers. *Parmelia perlata* is used in Ayurveda, Unani and Siddha. It is also used as grocery. Market samples showed it to be admixed with other species (*P. perforata* and *P. cirrhata*).

Sometimes, *Usnea* sp. is also mixed with them. Authentic plants can be identified by their thallus nature 14 .

Need for Substitution ^{15, 16, 17, 18}

Non-availability of the drug: Substitution for Ashtavarga Dravyas (group of 8 crude drugs). Uncertain identity of the drug: For the herb Lakshmana different species such as *Arlia quinquefolia, Ipomea sepiaria* etc are considered

Cost of the drug: Kumkuma being costly herb is substituted by Kusumbha

Geographical distribution of the drug: Rasna (*Pluchea lanceolata*) is used in Northern India while in southeren parts *Alpinia galanga* is considered as the source.

The adverse reaction of the drug: Vasa is a well known Rakta-Pittahara (cures bleeding disorder) drug, but due to its abortificiant activity its utility in pregnant women is limited, instead drugs such as Laksha, Ashoka etc are substituted.

Types of substitution:

Using totally different drug: Bharangi (*Clerodendron indicum*) and Kantakari. Bharangi has bitter taste; laghu (light) , ruksha (unctuous) guna (quality) and has Kapha-vatahara property. While Kantakari (*Solanum xanthocarpam*) has katu vipaka (punjent digestion) and ushna virya (hot potency). It has glycosides named verbascoside and solasoninie, solamargin, solasurine respectively. Both *C. indicum* and

ISSN: 2277-8713 IJPRBS

S. xanthocarpam have shown antihistaminic activity. Both *C. indicum* and *S. xanthocarpam* are commonly used in the diseases related to the respiratory system, which are usually associated with release of histamines and other autacoids ^[22].

Substitution of the Species Belonging to Same Family: The Datura metal and Datura stramonium can be considered here. Chemical constituents are alkaloids, scopalamine, atropin, hyocyamin, lyoscine. The alkaloids are proved as bronchodialatory and inhibitor of secretion of mucous membrane. The alcoholic extract of D. metal shows anthelmentic activity The alkaloid present in both the species are well proven bronchodilators and also they inhibit the secretion of mucous membrane of the respiratory tract. Thus as far as the diseases of the respiratory tract are concerned both D. metal and D. stramonium are beneficial, while as D. metal would be a better choice as it is a proven anthelmentic^[22].

Using different species: Two types of Gokshura viz. *Tribulus terrestris* (Zygophylaceae) and *Pedalium murex* (Pedaliaceae) of which, *T. terrestris* has the

ISSN: 2277-8713 IJPRBS

chemical constituents like chlorogenin, diosgenin, rutin, rhamnose and alkaloids. While *P.murex* has sitosterol, ursolic acid, vanilin, flavonoids and alkaloids. Both the species are proved for nephroprotective, lithotriptic, diuretic and hepatoprotective activities. The clinical conditions where Gokshura is indicated i,e,. *Mutrakrcra* (renal disorder), *Ashmari* (urinary calculi), *Prameha* (diabetes) etc, both *T. terrestris* and *P.murex* appear to be appropriate ^[22].

Using different parts of the plant: The root of Sida cordifolia and the whole plant of Sida cordifolia can be considered. Root has chemical constituents such the as sitoindoside, acylsteryglycoside. While the whole plant has alkaloid, hydrocarbons, fatty acids, ephedrine. various extracts of the whole plant showed anti-bacterial, antioxidant, hypoglycemic, hepatoprotective and cardio tonic activities. Though it is the root which is mentioned as officinal part of in the classics as Balya S. cordifolia (promotes strength), Shotahara (reduce inflammation) etc. Modern researches prove that even the aerial parts are also equally effective ^[22].

Due to same in action: *Embelica officinalis* shows antioxident, hepatoprotective, antimicrobial, hypoglycemic and hypolipidemic action. *Semecarpus* shows anti-tumour, hypotensive, anticytotoxic and anticancerous properties etc. Both Amalaki and Bhallataka are Rasayana (rejuvenator) drugs. In current practice the Rasayana

formulations are being employed as an adjuvant therapy in Chronic as well as Malignant diseases. Amalaki can be employed Rasayana in Chronic as debilitating diseases like bronchial asthma, diabetes etc, while Bhallataka would be better choice in malignant conditions, both [22 in solid tumors and in leukemia

Table 1
Commonly use substitution in Ayurvedic drug

SI. No.	Crude drug	Botanical name	Substitute	Botanical name
			drug	
1	Chitrak ^{19,21}	Plumbago zeylanica	Danti	Baliospermum
				montanum
			Apamarga	Achyranthus aspera
2	Murva ^{19,21}	Marsdenia	Jinghini	Lannea coromandelica
		tenacissima		
3	Bakula ^{19,21}	Mimusops elengi	Kamala	Nelumbo nucifera
4	Tagar ^{19,21}	Valeriana wallichii	Kustha	Saussrea lappa
5	Jatipatra(Aril) ^{19,21}	Myristica fragrans	Lavanga	Syzigium aromaticum
			Jatiphala(fruits)	Myristica fragrans
6	Puskar mool ^{19,21}	Inula racemosa	Kustha	Saussrea lappa
			Eranda(root)	Ricinus communis

Available Online At www.ijprbs.com

ISSN: 2277-8713 IJPRBS

	Article n Roy, IJPRBS, 2013;	Volume 2(1): 208-218		ISSN: 2277-8713 IJPRBS
7	Chavya ¹⁹	Piper chaba	Pippali(root)	Piper longum
8	Draksha ^{19,21}	Vitis vinifera	Kashmari phala	Fruits of Gmelina arborea
9	Bharangi ^{19,21}	Clerodendrum serratum	Kantakari	Solanum xanthocarpum
10	Dhanavayasa ^{19,21}	Fagonia cretica	Duralabha	Alhagi pseudalhagi
11	Ahimsa ^{19,21}	Capparis sepiaria	Manakanda	Alocasia indica
12	Bakula(bark) ^{19,21}	Mimusops elengi	Babul (bark)	Acacia arabica
13	Tulasi ¹⁹	Ocimum sanctum	Nirgundi	Vitex negundo
14	Riddhi & Vriddhi ¹⁹	Hobenaria spp.	Varahikanda	Dioscorea bulbifera
15	lkshu ¹⁹	Saccharum officinarum	Nala	Arundo donax
16	Kakoli ^{19,20}	Lilium polyphyllum	Asvagandha	Withania somnifera
17	Kshirakakoli ^{19,20}	Fritillaria roylei	Asvagandha	Withania somnifera
18	Bhallataka ^{19,21}	Semecarpus anacardium	Nadi Bhallataka	Semecarpus travancorica
19	Ativisha ^{19,21}	Aconitum heterophyllum	Mustaka	Cyperus rotundus
20	Dadim ^{19,21}	Punica granatum	Vrikshamla	Garcinia indica
21	Karpua ^{19,21}	Cinnamomum camphora	Granthi parna	Leonotis nepetafolia

Available Online At www.ijprbs.com

	w Article an Roy, IJPRBS, 2013;	ISSN: 2277-8713 IJPRBS		
22	Nagapuspa ¹⁹	Mesua ferrea	Padma kesar	Nelumbo nucifera
23	Kusha ¹⁹	Desmostachya bipinnata	Kasha	Saccharum spontaneum
24	Kutherika ^{19,21}	Ocimum basilicum	Gramya tulasi	Ocimum sanctum
25	Amlavetas ^{19,21}	Garcinia pedunculata	Chukra	Garcinia indica

DISCUSSION & CONCLUSION

It is not that all adulterations are intentional malpractice as stated in many literatures. With our experience it is noted that the herbal adulterated drugs are unintentionally also. Suppliers are illiterate and not aware about their spurious supply. Major reasons are confusion in name, nonavailability and lack of knowledge about authentic plant. Even scientific community and traditional physicians are unaware of it. Nowadays, Ayurvedic drug industries follow high quality standards using modern techniques and instruments to maintain their quality. World Health Organization (WHO), in its publication on quality standards for medicinal plant materials, recommends rejecting any batch of raw material, which has more than 5% of any other plant part of the same plant (e.g. stem in leaf drugs), never the less if they are derived from the authentic plant. Based on these standards, adulteration whether, intentional or unintentional, should be rejected. Also, suppliers and traders should be educated about the authentic sources.

REFERENCE

 Kokate CK, Purohit AP and Gokhele SB: Pharmacognosy. Chapter-6, Nirali Prakashan, 2007; 39th Ed: 97-98.

2. Anonymous, The Drugs and Cosmetics Act and Rule, (The Drugs and Cosmetics Act 1940, The Drugs and Cosmetics Rule 1945), Government of India, Ministry of Health and Family Welfare, chapter 2, 2003: 5.

3. Dubey NK, Kumar R and Tripathi P: Global promotion of herbal medicine: India's opportunity, Current Science 2004; 86(1): 37-41.

Available Online At www.ijprbs.com

4. Tewari NN: Some crude drugs: source, substitute and adulterant with special reference to KTM crude drug market. Sachitra Ayurved 1991; 44(4): 284-290.

5. Vasudevan Nair K, Yoganarasimhan KR, Kehava Murthy and Shantha TR: Studies on some south Indian market samples of Ayurvedic drugs II. Ancient Science of Life 1983; 3(2): 60-66.

Bisset WG: Herbal drugs & phytopharmaceuticals, CRC Press, London1984.

7. Sunita G: Substitute and adulterant plants, Periodical Experts Book Agency, New Delhi. 1992.

8. Uniyal MR and Joshi GC: Historical view of the basic principles of the identification of controversial drugs, problems and suggestions. Sachitra Ayurved 1993; 45(7): 531-536.

9. Sarin YK: Illustrated Manual of Herbal Drugs used in Ayurveda, CSIR & ICMR, New Delhi. 1996.

10. Saraswathy A: Adulterants and substitutes in Ayurveda. Sachitra Ayurved 2001; 54(1): 63-66.

 Gupta AK. Quality standards of Indian medicinal plants Vol. I. ICMR, New Delhi.
 2003.

12. De Smet PAGM, Keller K, Hansel R and Chandler RF. Adverse effects of herbal drugs. Vol. 1. Springer-Verlag, Heidelberg. 1992.

13. Afaq SH. A comparative introduction of the Unani and Tibetan medical traditions, AyurVijnana
1999; 6.
(http://www.ittm.org/publications/AyurVijn ana/Vol 06/AV V06 5.htm) Accessed on 25 January 2013.

14. S.K.Mitra and R.Kannan. A Note on Unintentional Adulterations in Ayurvedic Herbs. Ethnobotanical Leaflets 2007; 11: 11-15.

15. Sarin YK. Illustrated Manual of Herbal drugs used in Ayurveda, Joint Publication of C.S.I.R and I.C.M.R, New Delhi. 1996.

16. Mishra B, Shankar and Vaishya.R (editor) "Bhava Mishra's Bhavaprakasha Choukamba Sanskrit sansthan, Varanasi, UP, 10th ed: 2002.

17. Shastri Ambikadatta "Baishajya Ratnavali" Chaukambha Sanskrit Sansthan, Varanasi, U.P. 18th Ed: 2005.

Available Online At www.ijprbs.com

Review Article ISSN: 2277-8713 Anirban Roy, IJPRBS, 2013; Volume 2(1): 208-218 **IJPRBS** 18. Mukherjee PK: Quality Control of Herbal 21. Sastry R: Bhaishajya Ratnavali of Govind drugs, Business Horizons, New Delhi. 2002; 1st ed: 113-117. Bhavan; 2002. 19. Pandeya G: Caraka Samhita of Agnivesa 22. Poornima B: Adulteration with Cakrapanidatta Tika. Chaukhambha Sanskrit Sansthan, Varanasi. 1997. analysis, IJRAP 2010; 1(1): 8-12. 20. Chunekar KC: Bhavaprakasa Nighantu of

Bhavamisra. Chaukhambha Bharati Academy, Varanasi. 2004.

Das Sen. Varanasi: Chaukhamba Sanskrit

and substitution in herbal drugs a critical