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Abstract- As determined in the EU climate and energy 
package, until 2020, 20% of energy has to be gained from 
renewable sources together with a 20% reduction of the overall 
energy consumption. Today, approx. 40% of the total energy 
consumption in higher developed countries stems from 
buildings. Thus, aiming at a reduction of energy consumption 
in homes and public buildings is an important factor in the 
fulfillment of these objectives. This requires the development 
of new building energy management concepts. Accordingly, in 
this article, a novel cognitive architecture for building energy 
management based on advanced recognition, decision-making, 
and control strategies is introduced. Furthermore, a PV 
supplied, storage augmented, grid connected test bed is 
presented, which is suitable for flexibly testing the 
performance of building energy management systems in future 
renewable energy scenarios. The article shall be understood as 
the first part of a series of work in progress reports of our 
research. 
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I. INTRODUCTION 

The globally booming demand for (electrical) energy 
together with the trend of substituting fossil fuels and nuclear 
power with renewable energy (e.g., solar and wind, which are 
only intermittently available) brings new challenges to the 
energy market [1, 2]. In the EU climate and energy package 
2009 [3], it has been determined that within the European 
Union, 20% of energy has to be gained from renewable sources 
until 2020 and that the overall energy consumption has to be 
reduced by 20% until this date. For these new energy market 
constellations, also the employment of novel energy storage 
technologies and models of variable pricing (time-of-use 
pricing) – not only for large industrial clients but for all 
customers – are currently discussed [4]. 

Today, approx. 40% of the total energy consumption in 
higher developed countries stems from buildings (heating, 
cooling, ventilation, lighting etc.). Thus, aiming at a reduction 
of energy consumption in homes and public buildings has 

been identified as an important factor in resource saving and is 
a market with high growth potential [3]. For one part, the 
development of more energy efficient appliances and better 
thermal insulation of buildings to reduce heat losses will play 
an important role in this process. However, due to the high 
necessary investments, these measures can only be realized 
over a longer time horizon. In [5], it has been identified that in 
addition to this, the employment of innovative ICT-
technologies together with novel energy management 
strategies can bring up to 10% of energy savings but needs 
less investment costs and is realizable within a shorter time 
horizon. These novel ICT-concepts could furthermore allow 
for strategies of variable load shifting of energy consumers to 
times when enough energy is available. 

Today, ICT-based energy management in buildings is 
generally limited to relatively simple HVAC and lighting 
control mechanisms based on information from thermostats 
and occupancy sensors [6, 7, 8]. Various research projects 
(mainly in the field of demand-side management) are currently 
aiming at developing novel energy management concepts for 
the efficient scheduling and control of energy consumers in 
buildings incorporating also local renewable energy producers 
(e.g., photovoltaic system on the roof top) and storage devices 
into their consideration [9, 10]. Nevertheless, so far suggested 
concepts and algorithms for the control of such energy 
consuming devices and systems aiming at energy saving, peak 
load reduction, etc. are generally still based on relatively 
simple and rigid rules [11]. According to the current 
developments on the energy market described above, novel 
building energy management concepts will be needed in order 
to increase energy efficiency and increase the amount of 
renewable energy consumption.  

In this article, the application of a newly developed 
cognitive architecture as building energy management system 
in such renewable energy scenarios is discussed. For this 
purpose, Chapter 2 first gives an outline of the upcoming 
challenges and needs of future building energy management 
systems. Afterwards, in Chapter 3, we introduce our novel 
energy management architecture, basing on advanced situation 
and user activity recognition and decision-making approaches. 
In Chapter 4, a hardware test bed modeling a three-phase PV 
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supplied, storage augmented, grid connected household is 
introduced, which was designed to test the performance of our 
proposed architecture in various future renewable energy 
management scenarios. Finally, Chapter 5 provides a 
conclusion and an outlook. 

 

II. FUTURE CHALLENGES AND NEEDS 

In the following, a number of challenges and needs are 
outlined that come along with the planned shift to renewable 
energy resources and the targeted reduction of the overall 
consumption.  

 Limited amount of available energy 
No matter if obtaining energy from fossil fuels, nuclear 

power, or renewable resources, the energy that can be 
generated and distributed at reasonable economic expenses is 
limited. To allow for an optimal usage of available resources, 
future building energy management systems will have to 
provide mechanisms to limit the overall energy consumption 
by detecting and subsequently avoiding the operation of 
energy consumers not absolutely required (e.g., lights 
switched on in rooms where nobody is present) or not 
effective (e.g., heating/air conditioning switched on when 
window open).  

 Time of production ≠ time of consumption 
One major problem with renewable energy sources is that 

the times of energy production do not necessarily correspond 
to the times when energy is ideally consumed. One partial 
solution to this problem can be provided by a load shifting of 
energy consumers. However, this has to be done in an 
adequate way to not block services absolutely necessary and 
to not limit user comfort. This also includes mechanisms to 
determine what services are absolutely required 
immediately/within a certain timeframe by the users and what 
services are more uncritical for a load shift. Besides load 
shifting, a second solution can be a temporal storage of the 
produced energy for later use. However, the affordable storage 
capacity is still limited due to high investment costs and the 
energy conversion efficiency is still suboptimal. Furthermore, 
at least in the case of battery storage, the battery charging and 
discharging processes significantly influence the lifetime of 
the storage device. Thus, an optimization of the utilization and 
charging and discharging strategies of the storage device is 
important to get the optimum back from the made financial 
investment. 

 Limited predictability of time of production and time 

of consumption 

In renewable energy scenarios, the amount of produced 

energy is dependent on the specific climate and weather 

conditions, which can only be predicted up to a certain extent. 
Similarly, also the energy consumption by the user can 

currently only be estimated very roughly. Furthermore, 
climate and weather can influence the amount of energy 
needed (e.g., for thermal heat pumps). To allow for an 
adequate scheduling of resources, possibilities are necessary to 
adequately integrate (uncertain) weather forecast data and user 
behavior data into the energy management strategies. 

 Variable energy pricing models 
Due to the abovementioned discrepancy between the time 

of energy production (supply) and desired energy 
consumption (demand) of renewable energy, it is predicted 
that “self-regulating” mechanisms will be put into practice via 
the introduction of variable (daytime dependent) energy 
pricing models [4]. In the renewable energy scenario, where 
“clients” can be consumers (e.g. household appliances) and 
producers (e.g. PV on roof) at the same time, this offers 
completely new energy trading strategies. For instance a 
household could attempt a profit maximization by providing 
energy to the grid at times where energy has a high price and 
get energy from the net when the price is low and optimize 
this process by load shifting and storage strategies. 

 

III. BUILDING ENERGY MANAGEMENT ARCHITECTURE 

In Chapter 2, an overview was given about upcoming 
challenges and needs for building energy management 
systems in the renewable energy context. The objective of this 
chapter is to present a first sketch of a cognitive architecture 
for the purpose of building energy management capable of 
handling such scenarios. Fig. 1 gives an overview about the 
proposed architecture. 

The architecture consists of two main modules: the 
recognition unit and the decision & control unit.  

The recognition unit is responsible for recognizing the 
status of different components/devices of/inside the building, 
of situations going on in the building and of the activity and 
needs of building occupants. For this purpose, different 
sensors have to be installed in the building and in/on particular 
devices. Besides installed physical sensors (e.g., cameras, 
microphones, door, window, and cupboard contact sensors, 
presence detectors, light barriers, wattmeters, brightness 
sensors, temperature sensors, pyranometers), information can 
also be obtained from virtual sensors (e.g., status information 
received from different appliances, status information edited 
by users, weather data from a central weather station, etc.).  

 

 
Fig. 1. Building Energy Management Architecture 
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Based on the current situation, the decision & control unit 
has the task to decide about the activation and deactivation of 
specific energy consumers (e.g., appliances, heating, air 
conditioning, lighting), about when to charge and discharge 
storage devices, about when to get energy from and provide 
energy to the grid, and when to connect/disconnect local 
energy producers (e.g. photovoltaic system).  

Both the recognition unit and the decision & control unit 
base on a two-level information processing and actuation 
strategy.  

The lower-level, in Fig. 1 represented by the modules pre-
processing and “reactive” control, provides the system with a 
basic mode of function based on relatively simple, predefined 
rules in order to avoid system damage or substantial energy 
losses. In the pre-processing unit, simple status information 
from the building and different devices is extracted. In the 
“reactive” control unit, a simple actuator control is carried out 
based on this status information. An example for processing 
and control strategies in this level could be to detect that the 
battery storage is fully charged and to therefore disrupt the 
charging process to avoid battery damage. Another example 
would be to detect that the window is opened in a room and to 
therefore switch off the heating in order to avoid useless 
energy losses. 

The main modules of the higher-level information 
processing and actuation strategy are the sensor fusion & data 
mining unit and the reasoning & planning unit, which provide 
the system with advanced recognition and situation-aware 
control mechanisms based on innovative information 
processing, reasoning, and planning approaches.  

The sensor fusion & data mining unit receives (partly pre-
processes) information from the different physical and virtual 
sensors and additionally considers system knowledge (e.g., 
relations between objects, events, activities, and situations), 
specific data defined in profiles (e.g., scheduled activities in 
certain rooms), and information derived from situation 

forecasts (e.g., objects, events, activities, and situations that 
are likely to occur in specific time intervals or as a reaction to 
prior situations). Data processing in the sensor fusion & data 
mining unit bases on a so-called neuro-symbolic information 
processing strategy originally introduced in [12, 13, 14, 15, 
16, 17, 18]. Fig. 2 provides an overview of this neuro-
symbolic information processing structure, generally referred 
to as neuro-symbolic network. Neuro-symbolic networks are 
structured in a modular hierarchical fashion. Information is 
processed in consecutive levels starting with the extraction of 
simple features from sensor data, continuing with a detection 

of objects and events for each sensor modality separately, and 
finally resulting in a multimodal recognition of all currently 
occurring situations and activities. 

The basic information processing units of neuro-symbolic 
networks are so-called neuro-symbols (see Fig. 3), which 
combine characteristic of neural and symbolic information 
processing. Neuro-symbols represent and process perceptual 
information like features, objects, events, sounds, activities, 
and scenarios. To indicate that the perceptual information they 
represent has been detected in the environment, they have an 
activation degree. Each neuro-symbol has a certain number of 
inputs and one output. Via the inputs, information about the 
activation degree of connected neuro-symbols, sensors, or 
other information sources (system knowledge, profiles, and 
situation forecasts) is received. All incoming activations are 
weighted (positively or negatively), summed up, and 
normalized by the sum of the positives weights. If this 
normalized, weighted sum exceeds a certain threshold, the 
corresponding neuro-symbol is activated. The information 
about the calculated activation degree is transmitted via the 
output to other connected neuro-symbols. For further detailed 
descriptions about the function principle of neuro-symbolic 
information processing and examples of its successful 
application of see [19, 20, 21, 22].  

 

 

 
Fig. 2. Basic Structure of a Neuro-Symbolic Network as used in the Sensor Fusion & Data Mining Unit 
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Fig. 3. Basic Function Principle of Neuro-Symbols 

 
The reasoning & planning unit receives input from the 

sensor fusion & data mining unit concerning the current status 
of different components/devices of/inside the building, of 
situations going on in the building, and of the activities and 
needs of building occupants. Furthermore, it considers 
information stored in the modules system knowledge (e.g., 
information about the building, infrastructure installed, factual 
knowledge, the outcome of energy management strategies 
having already been employed in specific contexts), profiles 
(e.g., energy consumption profiles of appliances and other 
devices, customized user profiles about comfort ranges of 
different users), and situation forecasts (e.g., about the 
weather, likely user behavior, or the electricity price). For the 

decision making in the reasoning and planning unit, 
principally, different strategies can be employed. In [23], we 
introduced an approach based on a simple rule engine. In [10, 
24, 25, 26], we introduced a concept based on a complex 
neuro-cognitively inspired architecture. Due to limitations in 
space, we would currently like to refer to these publications 
for further reading. The presentation of a detailed evaluation 

and performance comparison of different decision-making 
approaches in the context of building energy management is 
planned for a separate consecutive publication. 

 

IV. IMPLEMENTATION AND PLANNED EXPERIMENTS 

In prior work, predecessor models of the architecture 
presented in Chapter 3 have been implemented in 
AnyLogic/Java [12] and RuleML [23], respectively and 
successfully tested for a range of applications including 
building surveillance/alerting systems  and autonomous agent 
control [23, 27]. Suitable test data were generated by different 
hardware installations and simulation environments [10, 19, 
20].  

Based on the experience gained in these former projects, 
we are currently in the course of building up a hardware test 
bed at our facilities to acquire data and validate the 
performance of our current architecture for the purpose of 
building energy management. Fig. 4 presents a schematic 
overview of the main building blocks of this test bed. For 
better clarity, the employed sensing and control devices are 
not depicted. The test bed models a three-phase PV supplied, 
storage augmented, grid connected household with 
controllable/ switchable loads. The test bed is designed to 
allow for maximal flexibility in the testing and validation of a 
wide range of possible future energy scenarios (see next 
chapter).  

In the following, a few technical key data of the test bed 
are summarized: As renewable energy source, a 5.4kWp 
photovoltaic system consisting of 22 PV modules of the type 
E-2000|245 is installed on the roof of a building with a tilt 
angle of 18° and an orientation of 50 south-west. As DC/AC 
solar inverter, an SMA inverter of the type Sunny Tripower 
5000TL-20 is used. For electricity storage, 8 solar lead-acid 

 
Fig. 4. Schematic Overview of Main Building Blocks of Test Bed and Possible Energy Flows 
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batteries of the type 12 V SGI 300 are used from which 
always four are connected in series resulting in two parallel 
48V strings with a electricity storage volume of in sum 
28,8kWh. To connect the batteries to the AC grid, three 
bidirectional uniphase Studer battery inverters of the type 
XTM2600-48 are used together with an ENS31NA as three-
phase electrical network monitoring system. The used energy 
consumers (loads) are switchable/controllable to model 
different energy consumption scenarios in a household and to 
allow for the evaluation of different load shifting strategies. In 
Fig. 4, the arrows indicate the possible directions of energy 
flow within the system, which are determined and controlled 
by our energy management architecture implemented on a PC 
and interacting with the different devices via a Beckoff PLC 
system. To allow for situation-aware control strategies and 
performance evaluations, the system is equipped with a range 
of different sensors and sensing devices including temperature 
and solar radiation sensors on the PV modules, temperature 
sensors on the battery inverters, and watt meters in all DC and 
AC branches. Furthermore, the system obtains information 
from “virtual” sensors based on event and activity models for 
different household scenarios and status information from the 
different devices. Acquired data are stored on a data server. 

Energy management strategies to be implemented and 
validated include but are not limited to (1) weather, situation, 
and user-behavior dependent resource scheduling, (2) non-
user comfort restricting energy saving and load shifting 
strategies, (3) grid stability support mechanisms via 
predeterminable load/feed-in curves. (4) profit maximization 
based on energy trading models with variable price models, 
(5) “in-house” energy consumption maximization in a multi-
parameter setting with secondary goals like user-comfort 
ensurance and profit optimization, (7) scale-up simulations for 
energy neighborhood management, (8) combinations of the 
objectives 1-7. 

 

V. CONCLUSION AND OUTLOOK 

In this article, a cognitive architecture for building energy 
management in future renewable energy scenarios has been 
introduced based on novel recognition, decision-making, and 
control strategies. Furthermore, a PV supplied, storage-
augmented, grid-connected test bed was designed, which is 
suitable for flexibly testing the performance of our 
architecture in different future energy management scenarios. 
The test bed is currently installed in the facilities of the 
technology park Villach. Once operational, the test bed will be 
used to evaluate the performance of our cognitive architecture 
as energy management system based on real data.  
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