

www.biodicon.com

Biological Diversity and Conservation

ISSN 1308-8084 Online; ISSN 1308-5301 Print

Research article/Araştırma makalesi

Chromosome count and karyotype study of eleven Nepeta L. (Lamiaceae) species from Iran

Navaz KHARAZIAN *1, Somayeh Zamani SHOURABI 2, Mehdi YOUSEFI 2

¹ Department of Botany, Faculty of Sciences, University of Shahrekord, Shahrekord, Iran ² Faculty of Sciences, Payame-eNour University of Isfahan, Isfahan, Iran

Abstract

Nepeta L. genus (Lamiaceae Family) with high morphological and chromosomal diversity is one of the large genus of Iran with important genetic resources in this country. In order to study the karyotype features in *Nepeta* species, 11 species and 31 accessions were collected from natural habitats of Zagros region. Their chromosome number and karyotype were studied using mitotic metaphase. The cluster analysis with Squared Euclidean Distance and Ward Methods were done by use of SPSS software ver.20 to display the chromosomal diversity. The results of this research showed that the studied taxa were diploid, tetraploid and hexaploid. Chromosome numbers were 2n=18, 22, 26, 32, 34, 36, 42, 54 and basic chromosome numbers were x=7, 8, 9, 11, 13, 17. Most of the numbers and all of the karyotypes were reported for Iran for the first time. The karyotypic results showed the diversity among the species as mostly displayed median point (M), median region (m) and sub median region (sm) and the chromosome lengths were in the range of 0.64-2 μm. From the clustering results, high chromosomal diversity was found in *N. glomerulosa*, *N. fissa*, *N. pungens*, *N. daenensis* and *N. schiraziana* accessions. It is concluded that Zagros region is one of the diversity centers in Iran and provide the evolutionary trends in this genus.

Key words: Karyotype, Chromosome number, Nepeta, Lamiaceae, Iran

1. Introduction

Nepeta L. (catmint) genus belonging to Lamiacaea Family and Nepetoideae subFamily (Cantino et al., 1992) is one of the largest and medicinal genera in this Family with 300 species growing as perennial, rarely annual, herbaceous and fruticose plants (Rechinger, 1982; Kaya and Dirmenci, 2008). *Nepeta* species are significantly distributed in Eurasia, North Africa, North and Central America and Canary Islands. The diversity and species richness are found in South West Asia and Himalayas (Jamzad et al., 2000; Celenk et al., 2008). This genus has 75 species in Iran, of which 39 are endemic (Rechinger, 1982; Jamzad et al., 2003).

Nepeta species being used in traditional medicine as antispasmodic, expectorant, diuretic and antiseptic activities are widely recommended by pharmaceutics and make them important among taxonomists (Celenk et al., 2008). The essential oils richness of species, not only enhances its medicinal value but also improves its acceptability beyond the domain of *Nepeta* genus (Kaya and Dirmenci, 2008).

Taxonomically, the classification of *Nepeta* has been contentious and debatable (Celenk et al., 2008). Bentham (1848) divided it into 8 sections and 109 species, Briquet (1896) documented 2 sections and 150 species. Additionally, Rechinger (1982) recognized 12 sections, Budantsev (1993) categorized 19 sections and 210 species, Dirmenci (2003 PhD thesis, 2005) acknowledged 11 sections for this genus, and Hassan et al. (2011) also reported 22 *Nepeta* species from Himalaya. Consequently, the above mentioned different classifications underscore the sharp and evolving disagreement among taxonomist concerning the subject including the research implication (Jamzad et al., 2003). Frequent hybridization and introgression, together with considerable habitat variation make *Nepeta* a particularly complex genus (Celenk et al., 2008).

Morphologically, the characters as leaf form, indumentum and margin, inflorescence type, calyx and corolla indumentum, nutlet form and color are appropriate morphological characters to determine the *Nepeta* species and display high variability, even among related species (Hedge and Lamond, 1982; Jamzad et al., 2003). These variations were first reported by Baden (1984) in leaves, bracteoles and calyx of *N. camphorata* Boiss. & Heldr. and *N. heldreichii*

Corresponding author / Haberleşmeden sorumlu yazar: Tel.: +98381-4424419; Fax.: +98381-4424419; E-mail: nkharazian@gmail.com © 2008 All rights reserved / Tüm hakları saklıdır BioDiCon. 295-0113

Hal. The Leaf morphology differences are noticeable even among the same species. Jamzad et al. (2000) and Kaya and Dirmenci (2008) argue that using nutlet micro morphology could help in classification of the *Nepeta* genus in the future. Furthermore, Jamzad et al. (2003) reported that the distribution of flavones in *Nepeta* genus provided some valuable data for the phylogenetic relationships. Moreover, Celenk et al. (2008) using palynological data in *Nepeta* genus argued that pollen features are appropriate markers for relationships in this genus.

Consistent with the complex nature of the *Nepeta* genus, significant number of cytological reports are widely known. Based on chromosome studies in different *Nepeta* species, ranging from 2n=14, 16, 18, 32, 34, 36, 54 and basic chromosome numbers, x=7, 8, 9, 13, 17, 18 (Aryavand, 1975, 1977; Gill, 1979; Marceno and Princiatto, 1980a; Gill, 1981; Ubera, 1983; Snogerup, 1985; Seidenbinder and Verlaque, 1985; Budantsev et al., 1992; Blatisberger and Huber, 1993; Khatoon and Ali, 1993; Trigas and Iatrou, 2006; Saggoo et al., 2011). The chromosome number 2n=18 and 36 are common in this genus whereas basic chromosome number as x=9 and 17 and 2n=34 are few common (Baden, 1983). On the contrary, Saggoo et al. (2011) reported that x=8 and x=9 were common in this genus. Also, Baden (1983) was observed B chromosome in some of *Nepeta* species. The karyological and chromosome morphology reports of this genus are mainly limited. However, Baden (1983) reported the karyotype of *N. sibthorpii* Benth. with three different groups of chromosome.

The chromosome count and karyotype studies are not only useful in predicting morphological similarity and diversity among *Nepeta* species they are valuable sources of taxonomic and biosystematics information. The absence and sometimes limited research work on chromosome data on the *Nepeta* species in Iran and Zagros means that the chromosome counts and karyology were made on *Nepeta* chromosomes from Zagros region. The objectives of this study are 1) to present karyological information, particularly the differences among them and 2) to determine the chromosome number and basic chromosome number of these taxa. Some of the chromosome numbers and all of the karyotypic illustrations are first reported for Iran.

2. Materials and methods

2.1. Plant materials

11 species and 31 accessions collected from natural habitats of Zagros province are listed in Table 1. Voucher specimens of the taxa studied were deposited in the Herbarium of Shahrekord University. The chromosome counts and karyology were done on chromosome 11 species and 31 accessions from Zagros region including *N. bakhtiarica* Rech., *N. persica* Boiss., *N. kotschyi* Boiss, *N. Juncea* subsp. *destrorum* Bornm., *N. glomerulosa* subsp. *carmanica* (Bunge) Benth., *N. oxyodonta* Boiss., *N. sessilifolia* Bunge, *N. pungens* (Bunge) Benth., *N. schiraziana* Boiss., *N. daenensis* Boiss. and *N. fissa* C.A. Mey.

2.2. Chromosomal studies

The following procedures were followed, in carrying out the chromosomal studies. For mitotic studies, the seeds collected from various accessions were germinated in sterilized Petri dishes. Then root tips meristems were pretreated with an ice bath at 4° C for 18 hours and then fixed in a mixture of ethanol: acetic acid (3:1, respectively) for 24 hours. The root tips were macerated in a 1N HCl solution at 60° C for about 5 minutes. A squash technique was used for cytological studies with 2% aceto-orcein solution (Ozkan, 2006). OLYMPUS BX50 photomicroscope provided the clearest mitotic metaphase among 25 cells. Ideograms prepared from mitotic metaphase. Chromosome measurements were based on five metaphase plates (Ozkan and Soy, 2007). From the point of view of chromosome morphology, the chromosome pairs were determined (Levan et al., 1964). In other to ensure the reliability and validity of the statistical estimates, the cluster analysis with Squared Euclidean Distance and Ward Methods were applied using SPSS software ver. 20 with eight cytological characters (L, S, L/S (AR), TL, %TF or the total form percentage [($\Sigma SA/\Sigma TL$)*100], A1 or intra chromosomal asymmetry index [1- å (SA/LA)/n], A2 or intra chromosomal asymmetry index [Sd /X]; Sd is the average of standard deviation, and X is the mean chromosome length, DRL or difference of range relative length [MaxRL%-MinRL%]) (Huziwara, 1962; Romero-Zarko, 1986; Sheidaei and Jalilian, 2008; Kalvandi et al., 2012).

3. Results

Following the completion of the study, consistent with the chosen research design and methodology, the following results were recorded.

3.1. N. schiraziana

The results of this study showed that the chromosome number of *N. schiraziana* is 2n=6x=54 (Figure 1 A, B), the basic chromosome number is x=9 and hexaploid species. The above result was the first of its kind in Iran. The karyotype of this species showed Median point (M), median region (m) and sub median region (sm) (Table 2, Figure 3). The chromosome length ranged from 0.64-0.88 µm. The karyotype data were first reported for Iran.

Species/accession	Locality	Altitude (m)
N. bakhtiarica	Chaharmahal va Bakhtiari- Naghan, dopolan	2114
N. persica 1	Chaharmahal va Bakhtiari- saman, Ben	1800
N. persica 2	Isfahan- damaneh	1750
N. persica 3	Kohkilouye va Boyer Ahmad- Yasouj	1800
N. glomerulosa subsp. carmanica 1	Chaharmahal va Bakhtiari- boroujen, Lordegan	1797
N. glomerulosa subsp. carmanica 2	Isfahan- Vanak Semirom	2000
N. glomerulosa subsp. carmanica 3	Kohkilouye va Boyer Ahmad- Sisakht	1900
N. glomerulosa subsp. carmanica 4	Chaharmahal va Bakhtiari- Lordegan, Vanak	2402
N. glomerulosa subsp. carmanica 5	Chaharmahal va Bakhtiari- Gandoman, Naghe	2440
N. glomerulosa subsp. carmanica 6	Chaharmahal va Bakhtiari- Gandoman	2470
N. oxyodonta 1	Chaharmahal va Bakhtiari- Naghan, Helen forest	1855
N. oxyodonta 2	Chaharmahal va Bakhtiari-Naghan, gardane Bare morde	1869
N. juncea subsp. desertorum 1	Chaharmahal va Bakhtiari- Boroujen, Sourak	2670
N. juncea subsp. desertorum 2	Chaharmahal va Bakhtiari- Boroujen	2610
<i>N. juncea</i> subsp. <i>desertorum</i> 3	Isfahan- Vanak Semorom	2150
N. sessilifollia	Chaharmahal va Bakhtiari- Ben, Sheikhe Shaban	2700
N. pungens 1	Chaharmahal va Bakhtiari- Chaleshtor	2000
N. pungens 2	Chaharmahal va Bakhtiari- Ben	2398
N. pungens 3	Isfahan- Damane	1850
N. pungens 4	Kohkilouye va Boyer Ahmad- Yasouj	1900
N. pungens 5	Isfahan- Semirom	1850
N. schiraziana 1	Chaharmahal va Bakhtiari- Naghan, kouh-e Kalar	2370
N. schiraziana 2	Chaharmahal va Bakhtiari- Nghan, Chahar Tagh	2400
N. schiraziana 3	Kohkilouye va Boyer Ahmad- toward Shiraz	1700
N. kotschyi	Chaharmahal va Bakhtiari- Naghan, Helen forest	1917
N. fissa 1	Isfahan- Fereydan	2200
N. fissa 2	Chaharmahal va Bakhtiari- Saman, Tiran	1941
N. fissa 3	Chaharmahal va Bakhtiari- Saman, Hore	2190
N. daenensis 1	Chaharmahal va Bakhtiari- Chahar tagh, kouh-e Kalar	2488
N. daenensis 2	Chaharmahal va Bakhtiari- Naghan, Chahar Tagh	2680
N. daenensis 3	Kohkilouye va Boyer Ahmad- Sisakht	2650

Table 1. the vouchers details of studied Nepeta species from Iran

3.2. N. pungens

Cytological studies revealed that the chromosome number of 2n=2x=22 was observed in *N. pungens* (Figure 1 C, D), basic chromosome number is x=11 and diploid species. The karyotype is median point (M) and median region (m) (Table 2, Figure 3). The chromosome length varied from 0.69-1.1µm. The chromosome number and karyotype of this species were first reported for Iran.

3.3. *N. fissa*

The chromosome number of *N*. *fissa* was 2n=2x=22 (Figure 1 E, F), basic chromosome number is x=11 and diploid species. Median point (M), median region (m) and sub median-region (sm) chromosomes were found in karyotype of this species (Table 2, Figure 3). The chromosome length varied from 0.82-1.47 µm. This is the first time that the karyotype of this species has been reported for Iran.

3.4. N. juncea subsp. desertorum

The chromosome number of *N. juncea* subsp. *desertorum* was 2n=2x=26 (Figure 1 G, H), the basic chromosome number is x=13 and diploid species. The karyotype of this species is median point (M), median region (m) and sub-median region (sm) (Table 2, Figure 4). The chromosome length varied from 1.21-1.38 µm. The chromosome number and the karyotype of this species have been first accounted in Iran. 3.5. *N. glomerulosa* subsp. *carmanica*

The chromosome number of *N. glomerulosa* subsp. *carmanica* is 2n = 2x = 18 (Figure 1 I, J), the basic chromosome number is x = 9 and diploid species. The karyotype of this species has median point (M), median region (m) and sub-median region (sm) (Table 2, Figure 4). The chromosome length ranged from 1.36-2 µm. The chromosome number and karyotype of this species were first reported in Iran.

3.6. N. persica

The chromosome number of *N. persica* was 2n=4x=36 (Figure 2 A, B), basic chromosome number is x=9 and tetraploid species. The karyotype of this species is median point (M), median region (m) and sub-median region (sm) (Table 2, Figure 4). The chromosome length ranged from 1.02-1.22 μ m. The karyotype of this species was first reported for Iran.

3.7. N. oxyodonta

The chromosome number of *N. oxyodonta* is 2n=6x=42 (Figure 2 C, D), the basic chromosome number is x=7 and hexaploid species. The karyotype of this species displayed median point (M) and median region (m) (Table 2, Figure 4). The chromosome length varied from 0.83-1.25 µm. Chromosome record of this species was first reported for Iran.

3.8. N. Daenensis

Cytological studies showed that the chromosome count of *N. daensisi* is 2n=4x=32 (Figure 2 E, F), the basic chromosome number is x=8 and tetraploid species. Median point (M), median region (m) and sub-median region (sm) chromosomes were observed in karyotype (Table 2, Figure 5). The chromosome length was in range of 0.92-1.27 μ m. Chromosome data were first accounted in Iran.

3.9. N. sessilifolia

Cytological studies showed that the chromosome number of *N. sessilifolia* is 2n=2x=26 (Figure 2 G), basic chromosome number is x=13 and diploid species. The karyotype of this species is median point (M) and median region (m) (Table 2, Figure 5). The chromosome length ranged from 1.08-2.25 µm. The chromosome number and karyotype of this species were first reported in Iran.

3.10. N. kotschyi

The chromosome number of 2n=2x=34 is reported for *N. kotschyi* (Figure 2 H), the basic chromosome number is x=17 and diploid species. Median point (M), median region (m) and sub-median region (sm) were observed in karyotype of this species (Table 2, Figure 5). The chromosome length ranged from 1.09-2.5 µm. Chromosome data of this species were first recorded in Iran.

3.11. N. bakhtiarica

N. bakhtiarica is one of the Zagros endemic species which displayed the chromosome number of 2n=2x=18 (Figure 2 I), the basic chromosome number is x=9 and diploid species. The karyotype of this species showed median point (M) and median region (m) (Table 2, Figure 5). The chromosome ranged from 1.06-2.21 µm. The chromosome counts and karyotype of this Iranian endemic species were recorded for the first time.

The ploidy levels of *Nepeta* species were diploid, tatraploid and hexaploid, and basic chromosome numbers were as x=7, 8, 9, 11, 13, 17 which eight of chromosome counts were first reported for Iran. The highest symmetrical karyotype was observed in *N. schiraziana* (TF= 49%), *N. oxyodonta* (TF= 48%), *N. daenensis* (TF=48%) and *N. persica* (TF=48%) (Table 3). Moreover, the highest cytological variations were observed in A1, DRL, TL, L and A2 characters (Table 3). The highest DRL displays the structural variation in chromosome which is observed in *N. glomerulosa* (DRL=4.99). The highest C.V. was found in *N. daenensis* (C.V.=80.7; A1) and the lowest was found in *N. persia* (C.V.=0.02; TF%). The highest chromosome arm was observed in *S. glomerulosa* (L=1.13) and the lowest was in *S. schiraziana* (L=0.31) (Table 3).

The results of cytological characters and cluster analysis showed two groups, 1) this group comprised two subgroups a) *N. glomerulosa* subsp. *carmanica* (diploid), *b) N. glomerulosa* subsp. *carmanica* (diploid), *N. juncea* subsp. *desertorum* (diploid), *N. bakhtiarica* (diploid), *N. fissa* (diploid), *N. pungens* (diploid) and 2) this group contained two subgroups c) *N. sessilifolia* (diploid), *N. oxyodonta* (hexaploid), *N. daenensis* (tetraploid), *N. schiraziana* (hexaploid) d) *N. daenensis* (tetraploid), *N. schiraziana* (hexaploid), *N. pungens* (diploid), *N. fissa* (diploid), *N. persica* (tetraploid), *N. kotschyi* (diploid) (Figure 6). High chromosomal diversity was found in *N. glomerulosa*, *N. fissa*, *N. pungens*, *N. daenensis* and *N. schiraziana* accessions.

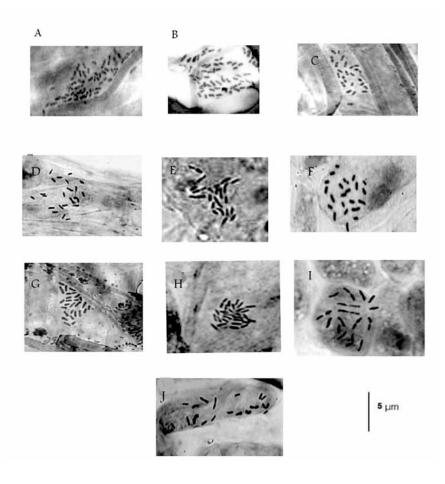


Figure 1. Photomicrograph of mitotic division in somatic cells of five *Nepeta* species. A, B: *N. schiraziana* (2n=54), C, D: *N. pungens* (2n=22), E, F: *N. fissa* (2n=28), G, H: *N. juncea* subsp. *desertorum* (2n=26), I, J: *N. glomerulosa* subsp. *carmanica* (2n=18).

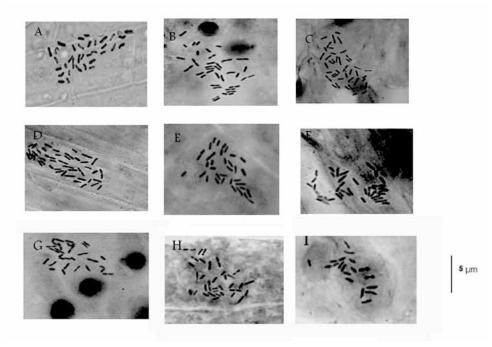


Figure 2. Photomicrograph of mitotic division in somatic cells of six *Nepeta* species. A, B: *N. persica* (2n=36), C, D: *N. oxyodonta* (2n=42), E, F: *N. daenensis* (2n=32), G: *N. sessilifolia* (2n= 26), H: *N. kotschyi* (2n= 34), I: *N. bakhtiarica* (2n= 18).

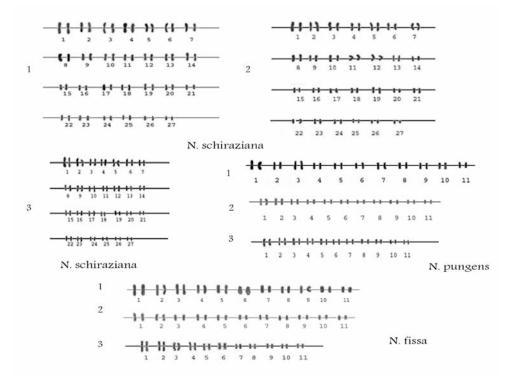


Figure3. Representative of ideogram in four Nepeta species.

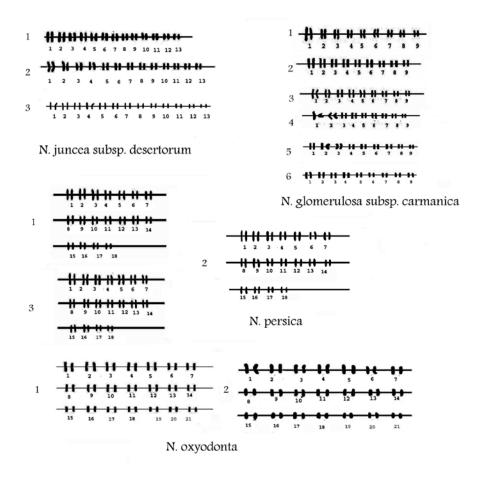


Figure 4. Representative of ideogram in four Nepeta species

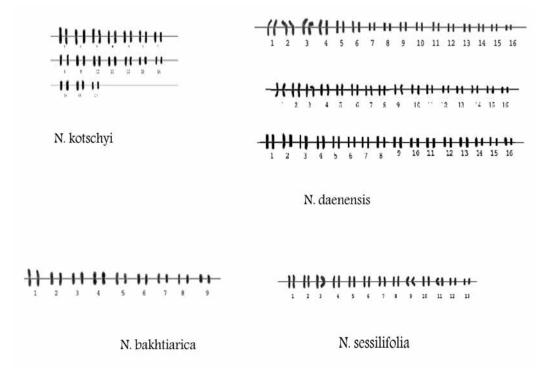


Figure 5. Representative of ideogram in four Nepeta species

Table 2. the chromosome number, basic chromosome number, ploidy levels and karyotype formulae in eleven *Nepeta* species

Species	Chromosome number	Basic chromosome number	Ploidy levels	Karyotype formulae
N. bakhtiarica	2n=2x=18	X=9	diploid	5M+4m
N. glomerulosa subsp. carmanica	2n=2x=18	X=9	diploid	3M+3m+3sm,5M+4m, 7M+1m+1sm,8M+1sm 4M+5m,5M+2m+2sm,
N. fissa	2n=2x=22	X=11	diploid	9M+1m+1sm, 10M+1m, 8M+2m+1sm
N. pungens	2n=2x=22	X=11	diploid	3M+8m, 11M, 7M+4m
N. persica	2n=4x=36	X=9	tetraploid	7M+10m+1sm, 11M+6m+1sm,8M+4m+6sm
N.sessilifolia	2n=2x=26	X=13	diploid	11M+2m
N. juncea subsp. decertorum	2n=2x=26	X=13	diploid	11M+1m+1sm,3M+10m, 7M+4m+2sm
N. kotschyi	2n=2x=34	X=17	diploid	4M+6m+6sm
N. daenensis	2n=4x=32	X=8	tetraploid	13M+3m,11M+4m+1sm,12M+2m+2sm
N. oxyodonta	2n=6x=42	X=7	hexaploid	19M+2m,13M+8m
N. schiraziana	2n=6x=54	X=9	hexaploid	15M+4m+8sm, 11M+3m+13sm, 11M+ 11m+5sm

Species/accession	S	L	L/S	Tl	A1	A2	%TF	DRL
N. schiraziana	0.31	0.32	0.96	0.64	0.02	0.35	48	2.79
N. schiraziana	0.37	0.39	1.05	0.78	0.04	0.37	47	2.31
N. schiraziana	0.44	0.45	1.02	0.88	0.03	0.37	49	2.50
C.V.	16.2	15.7	3.96	15.7	33.3	3.05	2.08	9.48
N. pugens	0.46	0.61	1.32	1.07	0.24	0.28	43	4.71
N. pugens	0.47	0.58	1.23	1.05	0.17	0.19	44	2.76
N. pugens	0.33	0.45	1.37	0.78	0.31	0.23	42	2.85
N. pugens	0.33	0.36	1.09	0.69	0.07	0.27	47	3.22
N. pugens	0.47	0.61	1.3	1.1	0.35	0.2	42	2.32
C.V.	17.1	21.1	7.93	19.3	50	17.39	4.74	28.7
N. fissa	0.44	0.58	1.32	1.02	0.23	0.33	42	4.69
N. fissa	0.63	0.84	1.33	1.47	0.23	0.33	42	4.69
N. fissa	0.37	0.45	1.22	0.82	0.22	0.25	43	3.5
C.V.	27.1	30.6	4.65	30	2.27	13.7	1.34	15.8
N. juncea subsp. decertorum	0.54	0.64	1.18	1.19	0.12	0.26	46	2.89
N. juncea subsp. decertorum	0.5	0.7	1.4	1.21	0.32	0.2	41	2.77
N. juncea subsp. decertorum	0.64	0.74	1.15	1.38	0.15	0.23	46	3.51
C.V.	20	7.24	10.48	7.9	52.6	13.04	6.57	12.7
N. glomerulosa subsp. carmanica	0.74	0.96	1.29	1.7	0.35	0.18	42	3.65
N. glomerulosa subsp. carmanica	0.73	0.97	1.32	1.7	0.27	0.18	42	2.96
N. glomerulosa subsp. carmanica	0.67	1.04	1.55	1.71	0.41	0.29	38	4.99
N. glomerulosa subsp. carmanica	0.69	0.88	1.27	1.58	0.22	0.19	43	3.2
N. glomerulosa subsp. carmanica	0.86	1.13	1.31	2	0.31	0.17	42	5.65
N. glomerulosa subsp. carmanica	0.57	0.79	1.38	1.36	0.28	0.22	41	2.86
C.V.	12.6	15.4	7.4	11.9	20	20	4.23	29.8
N. persica	0.5	0.56	1.12	1.07	0.08	0.22	48	2.42
N. persica	0.49	0.52	1.06	1.02	0.04	0.22	48	2.63
N. persica	0.58	0.63	1.08	1.22	0.06	0.22	48	2.64
C.V.	7.69	9.64	2.77	9.1	33.3	5	0.02	4.68
N. oxyodonta	0.47	0.59	1.25	1.25	0.51	0.19	46	1.55
N. oxyodonta	0.4	0.43	1.07	0.83	0.06	0.26	48	2.17
C.V.	9.3	21.5	10.34	27.8	75	18.8	3	23.1

Table 3. the chromosome features in eleven and 33 accessions of Nepeta species

Table 3.	(continued)
----------	-------------

N.sessilifolia	0.79	0.95	1.20	0.93	0.16	0.21	45	2.59
N. kotschyi	0.73	0.93	1.27	1.66	0.22	0.23	43	2.50
N. daenensis	0.5	0.53	1.06	1.04	0.06	0.35	48	3.83
N. daenensis	0.61	0.66	1.08	1.27	0.06	0.17	48	1.79
N. daenensis	0.43	0.49	1.13	0.92	0.09	0.26	46	2.51
C.V.	17.6	14.2	3.3	15.8	80.7	34.6	2.32	38
N. bakhtiarica	0.64	0.77	1.20	1.43	0.16	0.21	45	4.15

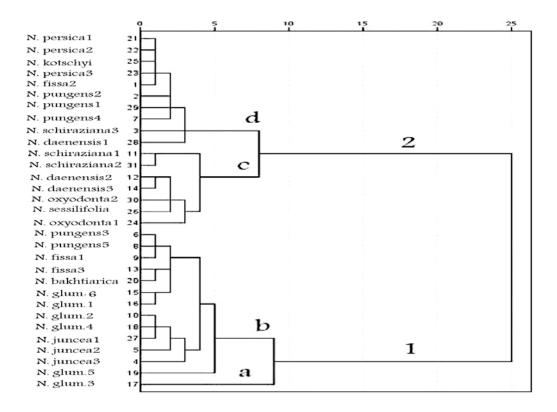


Figure 6. dendrogram of cytological characters and 31 accessions of Nepeta species in Iran

4. Conclusions and discussion

The current study presents the somatic chromosome numbers, basic chromosome numbers, and levels of ploidy and karyotype details of 11 species of *Nepeta* in Iran.

The ploidy levels of *Nepeta* species are diploid, tetraploid and hexaploid, and chromosome numbers are 2n= 18, 22, 26, 32, 34, 36, 42, 54. From the basic chromosome number reported above, it appears that *Nepeta* has more than one basic chromosome number. Consequently, these *Nepeta* species are thought to be diploid, tetraploid and hexaploid which is consistent with the literature. To validate this viewpoint, studies in the microsporogenesis of these species will be necessary to substantiate the process. The import of the foregoing is to provide reasonable evidential support for the differences and similarities of the *Nepeta* species studied in the context of the report.

According to the literature, some of the *Nepeta* species are characterized by several basic chromosome number such as x= 7 (Snogerup, 1985; Saggoo et al., 2011), 8 (Aryavand, 1977; Gill, 1981; Baden, 1983; Saggoo et al., 2011), 9 (Aryavand, 1977; Baden, 1983; Ubera, 1983; Gill, 1984; Budantsev et al., 1992; Khatoon and Ali, 1993; Ghaffari and Kelich, 2006; Saggoo et al., 2011), 13 (Saggoo et al., 2011), 17 (Casas, 1976; Ubera, 1983; Budantsev et al., 1992; Blatisberger and Huber, 1993) and 18 (Aryavand, 1977; Gill, 1979, 1984; Ubera, 1983; Seidenbinder and Verlaque, 1985; Khatoon and Ali, 1993). Based on the chromosome number Casas (1976), Aryavand (1977), Gill (1979, 1981,

1984), Ubera (1983), Baden (1983), Snogerup (1985), Seidenbinder and Verlaque (1985), Budantsev et al. (1992), Khatoon and Ali (1993), Blatisberger and Huber (1993), and Ghaffari and Kelich (2006) reported chromosome variation of 2n = 14, 18, 32, 34, 36 and 54 in different *Nepeta* species which refer the tetraploid and hexaploid levels and agree with our results. The basic chromosome number of x = 7, 8, 9, 13, 17 were accorded with previous results, however the chromosome number of 2n=22 and 42 and basic chromosome number of x=11 were not based on the previous reports. From the literature, it appears that Nepeta has different levels of ploidy. In this study, N. pungens, N. fissa, N. juncea subsp. desertorum, N. glomerulosa subsp. carmanica, N. sessilifolia, N. kotschyi and N. bakhtiarica are dioloid whereas N. persica and N. daenensis are tetraploid, and N. schiraziana and N. oxyodonta are hexaploid. Based on previous data, the diploid, tetraploid and hexaploid Nepeta species were common (Casas, 1976; Aryavand, 1977; Gill, 1979, 1981; Baden, 1983; Ubera, 1983; Gill, 1984; Snogerup, 1985; Seidenbinder and Verlaque, 1985; Budantsev et al., 1992; Khatoon and Ali, 1993; Blatisberger and Huber, 1993; Ghaffari and Kelich, 2006). Moreover, Saggoo et al. (2011) were reported 2n= 18, 36 and x=9, and diploid and tetraploid levels for 14 Nepeta species from India. In addition, the tetraploid cytotypes in 15 Nepeta species have been reported. It seems that the diverse chromosome numbers and basic numbers of Nepeta species indicate that the group of species in different regions has differentiated independently after diffusion (Yang et al., 2004). Moreover, the high base number of 17 appears to be secondary in origin and might have arisen by amphiploidy (Gill, 1979). The different chromosome numbers indicate that aneuploidy occurs in these species (Esra et al., 2011). However, remarkable variation could reflect the nuclear DNA variation (Javadi et al., 2011).

The karyotype details of *Nepeta* species in this context have not exactly been reported so far. Baden (1983) first reported the metacentric and sub-metacentric for *N. sibthorpii* which supports our results. Baden (1983) argues that details karyotype studies are difficult due to the small size of chromosomes. In this study, the chromosome type is median point (M), median region (m) and sub-median region (sm) and the range of chromosome length in this study varies between 0.64-2 μ m which is supported by Baden (1983) and mostly without constrictions which not corresponds with Baden (1983). Among the studied taxa, the highest length value was observed in *N. glomerulosa* subsp. *carmanica* (0.97-1.13 μ m) and the lowest was in *N. schiraziana* (0.31 μ m). The karyotype and variation patterns in basic chromosome number were related to the specific speciation mechanisms (Sheidaei and Jalilian, 2008), which suggests an important role in speciation and evolution of *Nepeta* species. The differences in chromosome length might come from population growth in different regions (Esra et al., 2011).

B chromosomes, which are also recognized as accessory chromosomes, have been often detected in some of *Nepeta* species. Baden (1983) first reported 2n=16+1-2B and 1-2 satellites for *N. sibthorpii*. In our results, there are not any B chromosomes and satellite in taxa studied.

The chromosome number of N. fissa was previously reported 2n=18 from Iran, Teheran province by Aryavand (1977). In our results the chromosome number of this species was observed 2n = 22 which is contrary to the previous report. In this case of variability, Gill (1979) reported the intra-specific races for some of Nepeta species. Moreover, N. schiraziana was reported 2n=16 by Aryavand (1975), whereas in this research we found 2n=54 for this species. Aryavand (1977) also reported n= 8 for N. persica from Iran, Isfahan province. Nevertheless in this research we found 2n=4x=36 and n=9 for this species. Based on the chromosome number variation, Budantsev et al. (1992) were reported 2n=34, n=17 in N. cataria L. which differs from that of Sugiura (1940) and Gill (1979)' report, who obtained 2n=36. Saggoo (1983, PhD thesis) reported n= 9 for N. distans Royle ex Benth, and n=18 for N. hindostana (Roth.) Haines, but Gill (1984) reported n=18 for N. diastans and n=9 for N. hindostana. Nakata et al. (2001) reported n=9 (2n=18) for N. subsessilis Maxim. with intra-specific polyploidy. Budanstsev et al. (1992) recorded 2n= 34 for N. grandiflora M. Bieb. and Krahulcova (1991) obtained 36 for this species. N. racemosa Lam. was first reported by Aryavand (1975) with n=18 and tetraploid level but Ghaffari and Kelich (2006) reported 2n=18, n=9 and diploid level for this species. Also, Baden (1983) reported 2n= 16 for N. camphorata although Gill (1981) obtained 2n=32 for this species. Budanstsev et al. (1992) reported 2n= 16 and 18 for N. transcaucasica Grossh. It can be inferred that the chromosome number of Nepeta species displayed high variations. Moreover, Saggoo et al. (2011) reported that aneupliody is operative both at diploid and polyploidy levels. They conclude that five species namely as N. cataria (2n=34, 36), N. distans (2n=18, 26), N. grandiflora (2n= 34, 36), N. nepetella L. (2n= 34, 36) and N. transcaucasica (2n=16, 18) display intra-specific aneuploidy without effecting ploidy level. It might be concluded that out breeding systems may be responsible for the chromosome variations (Murray and Young, 2001).

Khatoon and Ali (1993) reported n=9 for *N. juncea*. In our results we found 2n=26 for *N. juncea* subsp. *desertorum*. Based on the variations of chromosome number in *Nepeta* subspecies, Seidenbinder and Verlaque (1985) obtained 2n=36 for *N. nepetella* but Ubera (1983) recorded n=17 for *N. nepetella* subsp. *aragonensis*.

Based on the results of cluster analysis, the diploid species as *N. fissa* (2n=2x=22), *N. pungens* (2n=2x=22), *N. juncea* (2n=2x=26), *N. bakhtiarica* (2n=2x=18) and *N. glomerulosa* (2n=2x=18) were clustered in one group. In addition, *N. daenesis* (2n=4x=32) with tetraploid level was closely clustered with *N. schiraziana* (2n=6x=54) and *N. oxyodonta* (2n=6x=42) as hexaploid species. It seems that haxaploid and tetraploid species display different groups with diploid species. Moreover, *N. persica* (2n=4x=36) as tetraploid species and *N. oxyodonta* as hexaploid species were also grouped with some of diploid species. The highest cytological diversity observed in *N. fissa*, *N. pugens*, *N. glomerulosa*, *N. schiraziana* and *N. daenensis*. Obviously, the diploid accessions have more diversity than the tetraploid and

hexaploid species as *N. daenensis*, *N. schiraziana* and *N. pugens*. Most of the diploid species were closely clustered, and the tetraploid and hexaploid species were grouped in one cluster. These differences between ploidy levels might be due to the high gene flow at infra-specific levels and chromosome variation of these species. Furthermore, the diploid species have high potential to initiate speciation (Sheidaei and Jalilian, 2008). Chromosomal variations at the diploid levels seem to play a leading role and sympatric speciation via hybridization and polyploidization (Zhiyum et al., 2004). The change in the chromosomal traits is one of the mechanisms of inter and intra species diversification (Kalvandi et al., 2012).

Finally, *Nepeta* is a genus with diverse chromosome numbers and in some of the species the variability in chromosome complements is common (Goldblatt and Johnson, 2003). However, changes in the chromosome number and variation of karyotype structure can be considered as the main device of species diversification and the predominant feature of chromosomal evolution of this genus (Zhiyum et al., 2004; Sheidaei and Jalilian, 2008). Identifying the chromosome number of eleven *Nepeta* species in this study provides a base for biosystematic studies. Consistent with the study objectives, it is concluded that Zagros region is one of the diversity and speciation centers for this genus in Iran and provide the evolutionary trends in this genus. Further research work could be advanced to uncover necessary differences and similarities where necessary in other to provide additional insights and perspectives regarding *Nepeta* genus and related species.

Acknowledgements

Authors are grateful to Shahrekord University which supported this research.

References

Aryavand, A. 1975. Contribution a l'etude cytotaxonomique de qulques angiosperms de l'Iran. Bot. Notiser. 128. 299-311.

Aryavand, A.1977. In IOPB chromosome number reports LVII. Taxon. 26. 443-452.

- Baden, C. 1983. Chromosome numbers the Nepeta sibthorpii group (Lamiaceae). Willdenowia. 13. 337-340.
- Baden, C. 1984. Biosystematics studies in the *Nepeta sibthorpii* group. *N* . *heldreichii* included in *N. camphorata*. Willdenowia. 14. 335- 341.
- Bentham, G. 1848. Labiatae, In (Ed.) Candolle, A., Prodromus Systematis Naturalis Regni Vegetabilis, Treuttel and Wurtz, Paris. Volume 12, 27-603.
- Blatisberger, M., Huber, W. 1993. IOPB chromosome data. Int. Organ. Pl. Biosyst. Newslett. 20. 4-6.
- Briquet, J. 1896. Nepeta, Labiatae, In (Eds.) Engler, A., Prantel, K.P., Die Naturlichen Pflanzenfamilie, W. Engelmann, Leipzig. Volume 4, 235.
- Budantsev, A.L., Zemskova, E.A., Semicheva, T.G. 1992. Chromosome numbers in genera of the tribe Nepeteae (Lamiaceae) and some problems of their systematics. Bot. Zh. (Moscow & Leningrad). 77. 13–24.
- Budantsev, A. L. 1993. A synopsis of the genus Nepeta (Lamiaceae). Bot. Zh. 78: 93-107.
- Cantino, P.D., Harley, R.M., Wagstaff, S.J. 1992. Genera of Labiatae: Status and classification, In (Eds.) Harley, R.M., Reynolds, T., Advances in Labiate Science, Royal Botanic Gardens, Kew. 511–522.
- Casas, F.J. 1976. Numeros cromosomicos de plantas espanolas III. Lagascalia. 6. 91-96.
- Celenk, S., Dirmenci, T., Malyer, H., Bicakci, A. 2008. A palynological study of the genus *Nepeta* L. (Lamiaceae). Plant Syst. Evol. 276. 105-123.
- Dirmenci, T. 2005. A new subspecies of Nepeta (Lamiaceae) from Turkey. Bot. J. Linn. Soc. 147. 229-233.
- Esra, M., Cetin, O., Kahraman, A., Celep, F., Dogan, M. 2011. A cytomorphological study in some taxa of the genus *Salvia L.* (Lamiaceae). Caryologia. 64. 272-287.
- Ghaffari, S.M., Kelich, K. 2006. New or rare chromosome counts of some angiosperm species from Iran II. Iran. J. Bot. 12. 81-86.
- Gill, L.S. 1979. Cytotaxonomic studies of the Tribe Nepeteae (Labiatae) in Canada. Genetica. 50. 111-117.
- Gill, L.S. 1981. Chromosomal evolution and incidence of polyploidy in the Canadian Labiatae. J. Rev. Cytol. Biol. Veget. Bot. 4. 331-339.
- Gill, L.S. 1984. The incidence of polyploidy in the west Himalayan Labiatae. J. Rev. Cytol. Biol. Veget. Bot. 7. 5-16.
- Goldblatt, P., Johnson, D.E. 2003. Index to plant chromosome numbers 1998-2000. Monogr. Syst. Missouri. Bot. Gard. 94. 1-297.
- Hassan, T., Dar, G.H., Khuroo, A.A. 2011. Taxonomic status of genus *Nepeta* L. (Lamiaceae) in Kashmir Himalaya, India. Iran. J. Bot. 17. 181-188.
- Hedge, I.C., Lamond, J.M. 1982. Nepeta L., In (Ed.) Davis, P.H., Flora of Turkey and East Aegean Islands, Edinburgh University Press, Edinburgh. Vol. 7, 264-288.
- Huziwara, Y. 1962. Karyotype analysis in some genera of compositae. VIII. Am. J. Bot. 49. 116-119.

- Jamzad, Z., Harley, M.M., Ingrouille, M., Simmonds, M.S.J., Jalili, A. 2000. Pollen exine and nutlet surface morphology of the annual species of *Nepeta* L. (Lamiaceae) in Iran, In (Eds.) Harley, M.M., Morton, G.M., Blackmore, S., Pollen and Spores: Morphology and Biology, Royal Botanic Gardens, Kew. 385-397
- Jamzad, Z., Grayer, R.J., Kite, G.C., Monique, S.J., Simmonds, M.I., Jalili, A. 2003. Leaf surface flavonoids in Iranian species of *Nepeta* (Lamiaceae) and some related genera. Biochem. Syst. Ecol. 31. 587-600.
- Javadi, H., Hesamzadeh Hejazi, S.M., Babayev, M.SH. 2011. Chromosome reports on two species of *Thymus* (Lamiaceae). Iran. J. Bot. 18. 108-111.
- Kalvandi, R., Hesamzadeh Hejazi, S.M., Atri, M., Mirza, M., Jamzad, Z., Safikhani, K. 2012. Karyotype Analysis among 10 populations of *Thymus eriocalyx* (Ronniger) Jalas species in Iran. Ann. Biol. Res. 3. 3916-3925
- Kaya, A., Dirmenci, T. 2008. Nutlet Surface Micromorphology of the Genus *Nepeta* L. (Lamiaceae) in Turkey. Turk. J. Bot. 32. 103-112.
- Khatoon, S., Ali, S.I. 1993. Chromosome Atlas of the Angiosperms of Pakistan. Department of Botany, University of Karachi, Karachi, Pakistan.
- Krahulcova, A. 1991. Selected chromosome counts of the Czechoslovak flora III. Folia Geobot. Phytotx. 26. 225-368.
- Levan, A., Fredgak, K., Sandberg, A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas. 52. 201-220.
- Marceno, C.P.C., Princiatto, R. 1980a. Numeri cromosomici per la Flora Italiana. Inf. Bot. Ital. 12. 333-340.
- Murray, B.G., Young, A.G. 2001. Widespread chromosome variation in the endangered grassland forb *Rutidosis leptorrhynchoides* F. Muell. (Asteraceae: Gnaphalieae). Ann. Bot. 87. 83-90.
- Nakata, M., Takahashi, K., Katoh, H. 2001. Cytological studies on 31 Alpine plants collected in Murodou-daira, mts. Teteyama, central. Jpn. Bull. Bot. Gard. Toyama. 6. 5-20.
- Ozkan, M. 2006. Karyotype analysis on two endemic Salvia L. species in Turkey. Int. J. Bot. 2. 333-335.
- Ozkan, M., Soy, E. 2007. Morphology, anatomy, hair and karyotype structure of *S. blepharoclaena* Hedge & Hubb.-Mor., endemic to Turkey. Pak. J. Biol. Sci. 10. 893-898.
- Rechinger. K.H. 1982. Nepeta L., In (Ed.) Reghinger K.H., Flora Iranica, Akademische Druck-U. Verlagsanstalt, Graz, Austria. Volume 150, 108-216.
- Romero-Zarko, C. 1986. A new method for estimating karyotype asymmetry. Taxon. 35. 526-530.
- Saggoo, M.I.S., Srivastava, D.K., Grewal, P. 2011. <u>Meiotic studies in 14 species of the *Nepeta* L. (Lamiaceae) from cold desert regions of Lahaul-Spiti and adjoining areas of Northwest-Himalaya, India. <u>Cytologi</u>a. 76. 231-236.</u>
- Seidenbinder, M., Verlaque, R. 1985. Chromosome number reports LXXXVI. Taxon. 34. 159-164.
- Sheidaei, M., Jalilian, N. 2008. Karyotype study of some Iranian species and populations of *Lotus* L. Acta Bot. Croat. 67. 45-52.
- Snogerup, B. 1985. Chromosome number reports LXXXIX. Taxon. 34. 727-730.
- Sugiura, T. 1940. Studies on the chromosome numbers in higher plants. IV. Cytologia. 10. 324-334.
- Trigas, P., Iatrou, G. 2006. The local endemic Flora of Evvia (W. Aegean, Greece). Willdenowia. 36. 257-270.
- Ubera, J.L. 1983. Numeros cromosomicos para la Flora Espanola. Lagascalia. 12. 119-123.
- Yang, Z.J., Gong, X., Pan, Y. 2004. Cytological study of six *Salvia* species (Lamiaceae) from the Hengduanshan Mountains region of China. Caryologia. 57. 360-366.
- Zhiyum, Y., Gong, X., Pan, Y. 2004. Cytological study of six *Salvia* species (lamiaceae) from the Hengduanshan Mountains region of China. Caryologia. 57. 360-366.

(Received for publication 06 January, 2012; The date of publication 01 April 2013)