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ABSTRACT

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, representing a group of 
disorders characterized by loss of cardiac function as a result of irreversible damage to cardiomyocytes which 
results in scar tissue formation. Stem cell therapy are a viable option to improve cardiac function and to promote the 
repair and regeneration of the myocardium. Several preclinical and clinical trials have shown that transplantation 
of functional and healthy SCs can promote myocardial regeneration and repair. Here, we focus on the therapeutic 
applications of embryonic stem cells and adult stem cells to human CVD.

Keywords: Cardiovascular disease, Embryonic stem cells, Adult stem cells, Cardiac stem cells, Clinical trials, 
Therapy

Abbreviations: NYHA: New York Heart Association; LVEF: Left Ventricular Ejection Fraction; AMI: Acute 
Myocardial Infarction

INTRODUCTION

Cardiovascular disease (CVD) is currently the leading cause of death worldwide as it results in an irreversible damage 
to the cardiomyocytes and consequently a decline in the overall function of the heart. The discovery of stem cells with 
their potential to differentiate to any cell type appears to be the clue to the much anticipated cardioregeneration. Stem 
cell differentiation is the process whereby a cell change from one cell type to another, usually to a more specialized 
type. Stem cells (SCs) have the ability to divide for indefinite periods in culture and can differentiate into specialized 
cells-including daughter stem cells [1]. The ability of SCs to undergo such differentiation is called potency [2]. 
Plasticity is the ability to convert cells from one lineage to another thereby creating tissues other than that from which 
they were isolated [1]. The more cell types in the body that a SC can differentiate into, the higher its potency. 

Differentiation capacities of pluripotent versus adult stem cells

Pluripotent SCs can differentiate into any of the three embryonic germ layers (endoderm, mesoderm, and ectoderm), 
and their derivatives, and thus any cell within the mature organism. However, they cannot form extraembryonic 
tissues [2]. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are examples of pluripotent cells. 
Multipotent SCs can differentiate into multiple cell types of the parent organ only, they are more specialized than 
pluripotent ESCs and iPSCs and are thus limited in their potency potential [3]. Multipotent SCs are often referred to 
as progenitors, precursors, or somatic stem cells. Adult SCs which can be derived from various adult tissues or organs, 
for examples bone marrow derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), skeletal 
myoblasts (SMs), cardiac stem cells (CSCs), are good examples of multipotent stem cells (Table 1).

Table 1 Examples of adult stem cells

Isolates Source Brief Remarks References 
Hematopoietic 

stem cells Bone marrow They are the most characterized and have been employed in clinical 
settings for their therapeutic roles in hematopoietic malignancies. [4]

Germline stem 
cells

Basal layer of 
seminiferous tubules

C. elegans and Drosophila, are the most studied. They are easily 
identified and have greater tendency for easy genetic manipulations. [5]
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Mammary 
stem cells Mammary glands Studies has revealed that the anatomy and homeostasis of the ductal 

tree are preserved by bipotent and unipotent mammary stem cells. [6]

Epidermal 
stem cells

Basal layer of the 
epidermis 

Highly efficient in self-renewal for extended period of time and possess 
ability to differentiate to any lineage within their tissue of origin [7]

Neural stem 
cells

Subventricular zone of 
the lateral ventricle and 
the subgranular zone of 

the hippocampus

Possess ability to self-renew and differentiate to neurons, 
oligodendrocytes and astrocytes. Setbacks in assessing neural stem 
cells include, insufficient samples, poor therapeutic specificity, and 

efficacy, with chances for immune rejection

[8]

Intestinal stem 
cells

Base of the crypt of the 
intestinal epithelium

Consist of crypt plasticity leading to the conversion of progenitor 
cells to intestinal stem cells. However, there is insufficient data on the 

intestinal stem cells of humans.
[9]

Hair follicle 
stem cells

Bulge region of the 
epithelial stem cells in the 

hair follicle

They differentiate to the seven concentric layers of a mature hair 
follicle. They are within the early placode epithelium before noticeable 

of the bulge
[10]

muscle 
satellite cells

Basal lamina of 
myofibers

They are underneath the basal lamina and exterior to the myofiber 
plasma membrane. They are identified by immunofluorescence stained 

by marker such as transcription factors and membrane proteins. 
[11]

Embryonic stem cells, derived from the inner cell mass of the pre-implantation blastocyst stage embryo, are pluripotent 
SCs [12]. They have the ability to differentiate into any one of the somatic cell types of the endoderm, mesoderm 
or ectoderm and are very plastic in culture [13]. In contrast, adult stem cells (also called progenitor, precursors or 
somatic stem cells) are less plastic in culture, multipotent and lineage specific, possessing the ability to differentiate 
only into specific cell types of the tissue of origin in which they reside [3]. In comparison with ESCs, adult SCs are 
limited in their differentiation capabilities and are less plastic. For example, adult neural stem cell progenitors will 
only become cells of the brain, namely neurons, astrocytes, and oligodendrocytes [13]. However, extensive plasticity 
of adult stem cells has now been described, allowing the cells to differentiate across tissue lineage boundaries to other 
cell types of other lineages, a process referred to as trans-differentiation [12]. Unlike adult SCs, ESCs are prone to 
form teratomas, an encapsulated tumour with tissue components of the three embryonic germ layers.  

Possible therapeutic applications of ESCs and adult SCs to CVDs

Embryonic stem cells

ESCs are able to differentiate into cardiomyocytes when exposed to cardio-instructive cues like activin A and 
bone morphogenetic protein. The resulting ESC-derived cardiomyocytes can form contracting areas and link 
electromechanically with the host cells following transplantation [14,15]. However, ethical/political issues surrounding 
their use, the risks of teratoma formation and immunogenicity, have severely limited their clinical application in 
humans [13,16]. At present, only one clinical case has been reported. The ESCORT trial (in France) involve the 
transplantation of ESC-derived cardiomyocytes implanted in a fibrin scaffold and delivered surgically into the infarcted 
area of a patient with severe heart failure [17]. Three months after the procedure, patient experienced symptomatic 
improvement (move from NYHA Class III to NYHA Class I), new-onset contractility on echocardiogram and 
improved left ventricular ejection fraction (LVEF) from 26% to 36% [9]. Despite the limitations, ESCs still remain a 
vital laboratory tool for understanding differentiation and pluripotency in the cardiogenic process [16].

Skeletal myoblasts 

SMs are the first SCs to be explored for cardiac application [18]. Though SMs do not differentiate into cardiomyocytes 
in vivo, their phenotypic similarity to cardiac muscle, ease of isolation/expansion in vitro, the relative resistant to 
ischemia and the ability to derive autologous cells drives their application as a SCs source for cardiovascular disease 
(CVD) [19]. Preclinical studies show much promise for ischemic heart regeneration [20]. Some clinical studies done 
(like POZNAN trial and others) revealed some improvement in ventricular function (increased LVEF) and NYHA 
class levels [21,22]. The SEISMIC trial reveals minimal change in NYHA classification with no improvement in 
global LVEF [23]. The SMs differentiated into myotubes (rather than cardiomyocytes) with no gap junctions which 
causes conduction block in the heart and a significant risk for ventricular arrhythmias [21,22]. As such, clinical studies 
involving SMs for CVD has diminish in recent years.
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Bone marrow-derived stem cells

The bone marrow (BM) contains several types of SCs including, MSCs, HSCs, endothelial progenitor cells (EPCs) 
and mononuclear cells (BMMNCs) [13]. They can differentiate into cardiomyocytes and vascular endothelial cells, 
are easily harvested and can offer autologous cells for transplantation. These cells have been extensively tested for 
CVD in several preclinical and clinical studies. Martin-Rendon, et al. reviewed thirteen randomized controlled clinical 
trials (a total of 811 patients) involving intracoronary delivery of autologous bone marrow stem cells (BMSCs) to treat 
AMI [24].  The LVEF improved by 3% (p<0.01), the left ventricular end-systolic volume (LVESV) was significantly 
reduced by 4.74 ml (p<0.01) and the myocardial lesion improved by 3.51% (p<0.01) [24], thus indicating the potential 
role of BMSCs for CVD.

Mononuclear cells

The year 2002 witnessed the first clinical trial of BMMNCs in patients with acute myocardial infarction (AMI) [25]. 
The study revealed improvement in global LVEF with enhancement of myocardial perfusion. Other recent trials (like 
SWISS-AMI [26], BOOST [27], and TOPCARE-AMI [28,29] trials) showed similar results. However, the LateTIME 
double blind trial revealed no significant improvement in regional and global LVEF after 2-3 weeks [30,31]. Overall, 
BMMNCs studies have shown promise in the treatment of patient with AMI, though recent neutral results from other 
studies casts doubt on the potential therapeutic application of this new tool.

Mesenchymal stem cells

MSCs are also located in the adipose tissue, umbilical cord blood and placenta. They can differentiate into muscle, 
bone, cartilage, and adipose tissues. They can be relatively easily harvested from autologous bone marrow. They have 
low immunogenicity. Most importantly, they can differentiate into cardiomyocytes and endothelial cells in vivo when 
transplanted for AMI or non-injury in experimental models [32,33]. Their therapeutic action is postulated to be by 
the secretion of soluble paracrine factors [34]. Several clinical trials have been reported. The BOOST trial involves 
intracoronary transplantation of autologous BM-derived MSCs in AMI patients receiving percutaneous coronary 
intervention [35]. Global LVEF was increased by 6.7% compared to 0.7% in the control group [35]. Hare, et al. 
conducted a randomized, double-blind controlled phase 1 clinical trial in 2009 to assess the safety and efficacy of 
intravenously delivered BM-derived MSCs [36]. There were improvements in LVEF (as assessed by cardiac MRI) 
and global symptoms [36]. The REPAIR-AMI trial shows similar outcomes [37].

Hematopoietic stem cells and endothelial progenitor cells 

HSCs can differentiate into myeloid and lymphoid cell lineages. EPCs present in the peripheral blood can differentiate 
into vascular endothelial cells which can help to repair ischemia through neovascularisation. Phenotypic markers for 
HSCs and EPCs includes CD34 AND CD133. Several clinical trials done (in AMI/ischemic cardiomyopathy patients) 
using CD34+ or CD133+ cell types show much improvements in LVEF, myocardial perfusion, contractile function, 
LVESV levels and oxygen consumption [38-41]. EPCs have been shown to contribute to new vessels formation in 
myocardial ischemic experimental models [42,43]. We await the results of the clinical trials assessing the ability of 
EPCs to form new vessels in human myocardium.

Adipose-derived MSCs

They are phenotypically similar to BM-MSCs. They can differentiate into cardiomyocyte in vitro, they have low 
immunogenicity and they are relatively easily harvested by liposuction. Animal model studies with adipose-derived 
MSCs have shown great promise [44-46]. The Precise Trial and the MyStromalCell Trial are ongoing clinical trials 
assessing the benefits of this cells in human CVD. Preliminary results for the Precise Trial show improvements in LV 
mass and motion score index after 18 months [47,48]. 

Cardiac stem cells

The heart used to be known as a post-mitotic organ with no regenerative capacity. However, we now know that a 
small population of resident stem cells (known as cardiac stem cells, CSCs) exists in niches in the adult heart that 
are capable of cardiac cellular turnover throughout life replacing the dying cells [49,29]. These group of adult stem 
cells in the heart discovered by Beltrami and colleagues were shown to express markers of stem cells (ckit, Mdr1, and 
Sca1) [49].  The CSCs have then been extensively characterized into seven types: ckit cells [50], Sca1+ [51], IsI1+ 
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cells [52], side population cells (Abcg2/Mdr1+) [53], cardiac mesangioblasts [54], epicardial progenitors [55] and 
cardiosphere-derived cells (ckit+/flk1+/Sca1+) [56]. They have the ability to give rise to myocytes, smooth muscles 
and endothelial vascular cells. They can be harvested during heart surgery or endomyocardial biopsy, then expanded 
in culture. Experimental and clinical trials with CSCs are very promising [50]. Two clinical trials stand out. The 
SCIPIO trial [42], a phase 1 clinical trial were autologous ckit+ CSCs was transplanted via intracoronary injections 
in patients with ischemic cardiomyopathy. There was 12% increase in LVEF and decrease in infarct size [57]. In the 
CADUCEUS trial (another phase 1 clinical trial), autologous CDCs were transplanted by intracoronary injection in 
myocardial infarction patients. Six months’ post-injection, MRI reveals reduction in scar mass, increases in viable 
heart tissue and contractility. No adverse effect was reported 1 year after these 2 trials [58].

Induced pluripotent stem cells

Induced pluripotent stem cells utilizes cells from the individual and can thus avert immune rejection and repeated 
immunosuppressive therapy and its accompanying complications [59]. The iPSCs have the potential to differentiate 
into the three obligate cardiac cell types such as the cardiomyocytes, smooth muscles and endothelial cells [60-63]. 
Although the discovery of iPSCs has been a major breakthrough in the field of regenerative medicine, a lot of research 
however is still required for its clinical application as it is faced with drawbacks of high cost and time delay in 
production, inconsistent result, mutation post reprogramming, and retained epigenetic memory of the source tissue [64,65].

CONCLUSION

SCs therapy hold great promise for heart disease and may revolutionize the treatment of CVD. Much progress has 
already been made in a relatively short time and the results have been encouraging and generally safe. At present, 
no single SCs type has proven itself to meet sufficient standard for universal application of these cells clinically. 
Each SCs seems to have their own advantages and disadvantages. Large-scale clinical trials are needed if we must 
standardize and optimize the use of these cells and newer protocols must be established to circumvent their limitations. 
The ongoing TransACT 1 and 2 trials (using BM-derived CD133+ cells in MI patients) in the Bristol Heart Institute 
Hospital UK, are fascinating. SCs may soon become a powerful tool to be use by clinicians to mend a broken heart. 
Lastly, the most appropriate mode of delivery, time of delivery, retention and survival of cells still require further 
research.
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