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Abstract 
 

In this paper, we consider a bilevel stochastic transportation problem (BSTP) which is a two level 
hierarchical program to determine optimal transportation plan for a single product assuming that 
customers’ demands for the product are stochastic, in particular, exponentially distributed random 
variables. In our model, we suppose that the leader and the follower operate two separate groups of 
plants in a decentralized firm. The leader, who moves first, determines quantities shipped to customers, 
and then, the follower decides his own quantities rationally. There are holding and shortage costs at the 
customer zones. The leader’s objective is to minimize the sum of corresponding total transportation 
costs and the total expected holding cost. Holding costs can be negative which implies that the leader can 
sell excess quantities at some prices. Similarly, the follower’s objective is to minimize the sum of the 
corresponding total transportation costs and the total expected shortage cost. Our proposed model is 
transformed into a single level nonlinear programming by using its Karush-Kuhn-Tucker (KKT) 
conditions, and then, it is applied with a branch and bound algorithm to obtain noncooperative 
solutions. A small numerical example is also given to illustrate our model. 
 

Keywords: Bilevel programming, stochastic programming, stochastic transportation problem,   
                     exponentially distributed demand 

 

1. Introduction 
 

In practical optimization problems involving 
randomness, it is difficult to estimate modeling 
parameters accurately. Stochastic programming deals 
that kind of optimization problems under uncertainty in 
which the parameters are considered as random or 
stochastic variables to take into account the presence of 
uncertainty. In order to capture the impact of 
uncertainty, the original stochastic programming 
problem is usually transformed into a nonlinear 
deterministic equivalent problem by using probabilistic 
programming or two stage stochastic programming with 
recourse. Then standard solution techniques for 
nonlinear programming problems can be applied 
(Werner 2005). 

To estimate unpredictable or uncertain problem 
parameters, each source of randomness is necessarily 
represented by a probability distribution. It can be 
assumed that certain random variables are exponentially 
distributed to simplify and to make the model 
mathematically tractable. The exponential distribution is 
a special case of both gamma and Weibull distributions. 
These distributions are relatively easy to work with and 
often allow good approximation to the actual distribution 
when data are highly variable. The exponential 
distribution is usually used to represent interarrival 
times of customers to a system (time between two 
independent events) that occur at a constant rate, and 
the time to the failure of a piece of equipment. (Law & 
Kelton 1991; Ross 2003). However, Holmberg and Tuy  

 
 

(1999), Daneva et al. (2010) used that distribution for 
customer demands in their test problems with randomly 
generated parameters. 

Problems related to supply chain management can 
also have random or uncertain data in all stages, such as 
production and distribution from suppliers to customers. 
To assume otherwise is not realistic in most cases such as 
changing demand quantities, interarrival times between 
demands and prices. The purpose of the supply chain 
management is to coordinate suppliers, manufacturers, 
warehouses, retailers, transporters and customers 
simultaneously.  

Transportation is an important part of the supply 
chain management. The conventional transportation 
problem, which is based on a network structure 
consisting of a finite numbers of sources and 
destinations, is encountered in most stages of a supply 
chain. Products are to be transported in such a way that 
the total transportation cost is minimum. 

Bilevel programming (BP) is a nested hierarchical 
system where two decision makers act in a cooperative 
or noncooperative manner to optimize their individual 
objective functions. BP has been applied in fields which 
involve hierarchical relationship between two classes of 
decision makers, such as transportation networks, 
management, economic planning, engineering, chemistry, 
environmental sciences, optimal control, etc. 

In this paper, we consider a bilevel structured 
transportation planning type of problem involving 
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demand uncertainty. In literature, Patriksson & Wynter 
(1999) introduced stochastic extension of mathematical 
programs with equilibrium constraints, which can be 
regarded as a hierarchical decision making problem 
under uncertainty. Several methods have been suggested 
to solve stochastic mathematical programs with 
equilibrium constraints (SMPEC) such as smoothing 
implicit programming approach, smoothing penalty 
method, regularization method and sample average 
approximation (Lin et al. 2009).  

Ryu et al. (2004) addressed a bilevel decision making 
problem under uncertainty in which the first level 
decision maker manages distributions, and the second 
level decision maker is responsible for production in a 
supply chain. They presented a solution method based on 
parametric programming. Roghanian et al. (2007) 
discussed the same problem, but they tackled uncertainty 
by using chance constrained programming, where 
constraints may not be satisfied at certain levels of 
probability. Werner (2005) studied bilevel stochastic 
programming problems as an extension of stochastic 
programming problems where part of the uncertainty is 
attributed to the behavior of another decision maker. 
Author applied this bilevel stochastic programming 
formulation to telecommunication sector. Kato et al. 
(2006) considered a two level manufacturing planning 
problem which involves random variables in some 
parameters to deal with hierarchical decision making 
problems under uncertainty. Authors applied an 
interactive fuzzy programming method to their 
probability maximization model. Katagiri et al. (2007) 
considered a hierarchical decision problem with two 
noncooperative decision makers by constructing two 
level expectation optimization and two level variance 
minimization models. Kalashnikov et al. (2010) 
presented a bilevel multi-stage stochastic optimization 
model development to balance fuel volumes over a 
distribution network of natural gas supply chain. In their 
model, the natural gas shipping company is considered as 
the leader, and the pipeline operating company is 
considered as the follower. Akdemir & Tiryaki (2011) 
proposed a bilevel stochastic transportation model for  
discrete customer demand cases. 

This paper is arranged as follows; in the following 
section, we first present some preliminary essential 
concepts. In section 3, a description of BSTP and its 
formulation are given, after that, the KKT conditions are 
provided. In section 4, a simple numerical example and 
its computational results are given to illustrate 
application of the problem. Finally, in section 5, 
conclusions are drawn regarding the model. 

 

2.  Preliminaries 
 

2.1. Stochastic Transportation Problem 
 

When customers’ demands for a certain product are not 
known with certainty, the single period problem of 
determining the optimal quantities of a product to be 
shipped from supply points to demand points is a 
stochastic transportation problem (STP).  

 

2.1.1. Nomenclature 
 

Parameters 

iS capacity of plant i  ( 1, ,i m ) 

jd stochastic demand of customer j  ( 1,2, , )j n  

ijc unit cost of transportation from plant i  to customer j  

jp unit shortage cost (penalty rate for each unit of unfulfilled 

demand) at customer zone j   

jh unit holding cost (penalty rate for each unit in excess of 

quantity demanded) at customer zone j  
 

Decision variables 

ijx  quantity shipped from plant i  to customer j  

jy  total quantity shipped to customer j  

 

Functions 

 ( )j t  probability density function of customer demand j  

 ( )j t cumulative distribution function of customer demand j  

 

The amounts of demands are uncertain and the set of 
possible values is uncountable (divisible product), but 
they are described by stochastic variables with known 
distribution functions.  

The resulting optimization model is a linearly 
constrained nonlinear convex problem (Williams 1963; 
Daneva et al. 2010).  

 

STP is formulated as: 





  





 

 

  

 

1 1 1 0

1

min ( ) ( )

( ) ( )

j

j

y
m n n

ij ij j j j
i j j

n

j j j
j y

c x h y t t dt

p t y t dt

 

 





 

 

 





1

1

subject to , 1,2, ,

, 1,2, ,

0, ,

n

ij i
j

m

ij j
i

ij

x S i m

x y j n

x i j

 

 

where the objective function of the problem is derived as: 
 

  

 
    
 
 

  
1 1 1 0

min ( ) ( )
jym n n

ij ij j j j j j
i j j

c x h p t dt p y  

 

by omitting the constant term 
 




1

( )
n

j j
j

p E d . 

 

The STP has been treated in many papers and can be 
solved efficiently (Holmberg & Tuy 1999), for example 
with the Frank-Wolfe method (Frank & Wolfe 1956), by 
cross decomposition (Holmberg 1992), by separable 
programming (Holmberg 1984), by the forest iteration 
method (Qi 1985) and by mean value cross 
decomposition (Holmberg & Jörnsten 1984). 

 

2.2. Bilevel Programming 
 

In BP, the set of decision variables is partitioned between 

two vectors 1x  and 2x . The first level decision maker 

(leader) controls over the vector 1x , and the second 

level decision maker (follower) controls over the vector 

2x . It is assumed that the leader decides his decision 

vector first, and then, the follower reacts to the leader’s 
decision by taking into account leader’s strategy.  

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wynter:Laura.html
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The BP problem can be formulated as: 
 








min ( , )

subject to ( , ) 0

where solves

min ( , )

subject to ( , ) 0

F

G

f

g

1

2

1 2
x

1 2

2

1 2
x

1 2

x x

x x

x

x x

x x

 

where upper-level variables  ,p1x  lower-level 

variables  r
2x , upper-level objective function 

: ,p rF    lower-level objective function  

 : ,p rf  upper-level constraints  


 : p r sG  and lower-level constraints 

 : .p r sg  
 

Several methods have been proposed to solve BP 
problems. A survey of existing methods is given in Colson 
et al. (2005b). Using the branch and bound algorithm 
(Bard & Moore 1990) in our proposed model, we dealt 
with a bilevel structure for noncooperative case. So, 
rather than working with hierarchical form, we 
converted it into a standard mathematical program. This 
can be achieved by replacing the second level problem 
with its KKT optimality conditions. This operation 
reduces the original problem to a single level program 
involving nonlinear complementary constraints (Colson 
et al. 2005a). 

The equivalent single level program of the BP problem 
follows as: 

 











   

 

 

min ( , )

s.t. ( , ) 0

( , ) 0

( , ) ( , ) 0

( , ) 0, 1, ,

0, 1, ,

T

i i

i

F

G

g

f g

g i s

i s

1 2

2 2

1 2
x ,x ,μ

1 2

1 2

x 1 2 x 1 2

1 2

x x

x x

x x

x x x x

x x

 

 

where  sμ is the vector of Lagrange multipliers.  

The KKT conditions are necessary optimality 
conditions for the second level problem. The KKT 
conditions are also sufficient, if the second level problem 

is a convex optimization problem in variables  r
2x  for 

fixed parameters  p
1x (Dempe 2003). Hence, any 

local minimum will be global minimum for the second 
level. However, equivalent single level programming 
problem is difficult to solve due to nonlinear 
complementary constraints: 

  ( , ) 0, 1, ,i ig i s1 2x x . 
 

In branch and bound algorithm, the complementary 
constraints are removed to construct the relaxed 
program. Supposing that the solution of the relaxed 
program does not satisfy some complementary 
constraints: 

 ( , ) 0i ig 1 2x x , 
 

branching is performed by separating two subproblems 

one with  0i  as an additional constraint, and the other  

with the constraint ( , ) 0ig 1 2x x , selecting i  for which 

 ( , )i ig 1 2x x  is the largest. Branching is repeated until all 

complementary constraints are satisfied or an infeasible 
solution is obtained. Resulting feasible solutions are 
labeled as candidate solutions (Bard & Moore 1990; 
Colson et al. 2005a).  
 

3. Problem Description  
 

3.1. Assumptions 
 

(i) The set of plants is partitioned into two sets 1L  and

2.L 1L  is the set of Level 1 plants which are operated by 

the leader. Similarly, 2L  is the set of Level 2 plants which 

are operated by the follower (Sonia et al., 2008).  

(ii) The leader controls variables  1,ijx i L  and the 

follower controls variables  2,ijx i L  for 1,2, ,j n , 

where  

 



1

ij i L
x1x  and  




2
ij i L
x2x . 

 

(iii) Customer demand amounts are stochastic variables 
with known continuous distribution functions. In this 
paper, it is assumed that demands are exponentially 

distributed random variables with mean 1/ j , i.e., the 

probability density functions are chosen to be the form:  
 

   ( ) exp( )j j jt t  for 1,2, ,j n . 

 

(iv) The follower determines his quantities shipped to 
customers after the leader does. Each decision maker has 
to decide before demands are realized. There are holding 
and shortage costs at customer zones. Holding cost can 
be interpreted as a penalty when the actual customer 
demand is lower than the total quantity shipped to the 
customer. In our problem, if the firm supplies more than 
demanded, then it is assumed that a holding cost is 
occurred for the leader. So, the objective of the first level 
is to minimize its own total transportation costs plus 
total expected penalty cost of oversupply. But, holding 
costs can be negative which implies that the leader can 
sell excess quantities at some prices.  

Shortage cost can be interpreted as a penalty when 
the actual customer demand is higher than the total 
quantity shipped to the customer. In our problem, if 
some demands are not met by the firm, then it is 
assumed that the follower has to do make-up shipments 
with a unit shortage penalty. So, the objective of the 
second level is to minimize its own total transportation 
costs plus total expected penalty cost of the undersupply. 
The shortage costs belonging to the follower is assumed 
to be assuring because the lower level problem is convex. 
So, the KKT conditions are the necessary and sufficient 
optimality conditions.  

Briefly, the follower decides  2,ijx i L after the leader 

decides  1,ijx i L  for customer j . Then demand jd  is 

realized. For customer j , if  




1

m

j ij
i

d x

 
 

then there is a holding cost 
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


1

( )
m

j ij j
i

h x d

 
 

for the leader, and if 




1

m

j ij
i

d x

 
 

then there is a shortage cost 




1

( )
m

j j ij
i

p d x

 
 

for the follower. 
 

3.2. Formulation of the Problem 





  





  





 
  
 
 

 

  

 
  
  
 

 



  


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
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1
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1 1 0
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1

1

1 1

2
1

1

(P1)min ( ) ( )

s.t. ,

0, ; 1,2, ,

where  solves

min ( ) ( )

s.t. ,

,

j

j

n n

ij ij j j j
j i L j

n

ij i
j

ij

n n

ij ij j j j
j i L j

n

ij i
j

m

ij j
i

y

y

c x h y t t dt

x S i L

x i L j n

c x p t y t dt

x S i L

x y

1

2

2

x

x

x



  2

1,2, ,

0 ; 1,2, ,ij

j n

x i L j n

 

 

3.3. The KKT Conditions for BSTP 
 

The objective functions are obtained by calculating the 
integrals in (P1): 


  

 
    

 
 

 
11 1

min ( , ) exp( )
n n

j
ij ij j j j j

j i L j j

h
F c x h y y1 2

1x
x x  

 

and 
 


  

   
21 1

min ( , ) exp( )
n n

j
ij ij j j

j i L j j

p
f c x y1 2

2x
x x . 

objective function of the second level problem f  is a 

convex function in 2x  with partial derivatives: 





  




1

exp( )
m

ij j j kj
ij k

f
c p x

x
 

 



  

 
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

2

1

exp( ), if

0, if

m

j j j kj
k

ab ij

p x j bf

x x
j b

,     2,a i L  

because the Hessian of f  is a positive semidefinite 

matrix. The KKT conditions are the necessary and 
sufficient conditions for the second level programming 
problem due to convexity. The Lagrange function of the 
second level problem is: 


   

   

  

  

  

  

1 1 12

1 12 2

( , , , ) exp( )

( )

n n m
j

ij ij j kj
j i L j kj

n n

i ij i ij ij
i L j j i L

p
L c x x

u x S v x

1 2x x u v
 

where the variables  2, , , 1,2, ,i iju v i L j n  are Lagrange 

multipliers. The KKT conditions for the second level 
problem become: 

  2, 0, , 1,2, ,i iju v i L j n  





     




1

exp( ) 0,
m

ij j j kj i ij
kij

L
c p x u v
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 2 , 1,2, ,i L j n  



   2
1

( ) 0,
n

i ij i
j

u x S i L  

0,ij ijv x   2 , 1,2, ,i L j n  



  2
1

,
n

ij i
j

x S i L  

  20, , 1,2, ,ijx i L j n  

Variables ijv  can be eliminated; so, the equivalent single 

level program (P2) is derived as: 
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20,

0 ,ij

i L
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4. Numerical Example 
 

A petroleum company has three refineries and four 
customer zones. Production capacities of those refineries 
are 150, 200, and 100 units of petrol, respectively. The 
customer demand varies from zone to zone, the demand 
of customers are exponentially distributed with  

   0.012 0.007 0.008 0.006
T

. 

The parameters  j  are chosen from the interval 

[0.005,0.02]  which yields expected demands in the 

interval [50,200] . It is assumed that the third refinery is 

operated by the leader and other refineries are operated 
by the follower. 

Transportation, holding and shortage costs are given 
as follows: 

 
 

  
 
 

8 2 5 4

2 4 6 7 ,

6 5 3 4

c     16 18 5 6 ,
T

h

  60 28 20 30 .
T

p
 

 

By using the KKT conditions, reformulation of bilevel 
problem becomes: 
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, 0

0, 1,2,3, 1,2,3,4ij

u x x x x

u x x x x

u u

x i j

 

 

Branch and bound algorithm is applied to the problem 
and the resulting solution of the problem is given in 
Table 1. 

 

Table 1. Noncooperative solution 

    

 
 
 
 

 
  
 

* *
3

*
1*

*
2

0 0 46.3298 53.6702 ,

0 74.3195 0 75.6805
,

150.9470 49.0530 0 0

j

j

j

x

x

x

1

2

x

x

  * * * *
1 29.8059, 7.8059, ( , ) 3684.926.u u F 1 2x x  

 
5. Conclusion 
 

In this paper, we propose BSTP and its KKT 
conditions. BSTP is a bilevel version of STP. The leader 
(follower) tries to optimize his total transportation costs 
plus total holding (shortage) costs assuming that the 
customer demands are exponentially distributed random 
variables. We also assume that any leftover quantity can 
be sold at a unit price which is represented by a negative 
function allows us to reformulate the bilevel problem as a 

holding cost. Convexity of the follower’s objective single 
level nonlinear programming problem by using the KKT 
conditions. Equivalent single level problem involves 
complementary constraints which are tackled by Branch 
and Bound algorithm.  

In our example, there are two refineries in the second 
level, one refinery in the first level and four customers. 
The number of constraints is 35 and the 59 subproblems 
are solved to obtain noncoopertaive solution. However, 
resulting solutions are only local since the first level 
objective function is not convex. Global optimization 
techniques can be applied to improve the solution 
algorithm, especially for large sized problems.  
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