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Abstract

In this paper we establish some common fixed point theorems in a
normal cone metric space by altering distances, also we generalize the
MS-altering function (see[4]).
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1 Introduction

Since the Banach Contraction Principle, several types of generalization con-
traction of Mappings on metric spaces have appeared. One such method of
generalization is altering the distances. Delbosco [1] and Skof [6] have estab-
lished fixed point theorems for self maps of complete metric spaces by altering
the distances between the points with the use of a positive real valued function.
Huang and Zhang [2] introduced the concept of cone metric space by replacing
the set of real numbers by an ordered Banach space and obtained some fixed
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point results with the assumption that the cone is normal. Recently in [4]
author defined a vector valued function, the MS-altering function and proved
some fixed point theorems.

In this paper we are generalizing the results of [4] and proving some com-
mon fixed point theorems in normal cone metric spaces, also we improve the
definition of MS-altering function.

2 Preliminary Notes

Definition 2.1 : Let E be a real Banach space and P be a subset of E. P
is called a cone if
(a) P is closed, nonempty and P 6= {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;
(c) x ∈ P and −x ∈ P ⇒ x = 0.
Given a cone P ⊆ E, we define a partial ordering “ ≤ ” in E by x ≤ y if
y − x ∈ P. We write x < y to denote x ≤ y but x 6= y and x ≪ y to denote
y − x ∈ P 0, where P 0 stands for the interior of P. We assume cone is solid
i.e. that P 0 6= φ.

Proposition 2.2 [3]: Let P be a cone in a real Banach space E.
(1) If a ∈ P and a ≤ ka, for some k ∈ [0, 1) then a = 0.
(2) If a ∈ P and a≪ c, for all c ∈ P 0 then a = 0.

A cone P is called normal if there is constant K > 0 such that, for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ‖x‖ ≤ K‖y‖. The least value of constant K satisfying this
inequality is called the normal constant of P.

Definition 2.3 [2]: Let X be a nonempty set and E be a real Banach space.
Suppose that the mapping d : X ×X → E satisfies
(a) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0, if and only if x = y;
(b) d(x, y) = d(y, x), for all x, y ∈ X ;
(c) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

For examples of cone metric spaces we refer [2, 5].
Henceforth unless otherwise indicated, P is a normal cone in real Banach space
E and “ ≤ ” is partial ordering with respect to P .

Definition 2.4 [2]: Let (X, d) be a cone metric space. Let {xn} be a se-
quence in X and x ∈ X.
(a) If for every c ∈ E with 0 ≪ c (or equivalently c ∈ P 0) there is positive
integer n0 such that for all n > n0, d(xn, x) ≪ c then the sequence {xn} con-
verges to x. We denote this by xn → x, as n→ ∞ or limn→∞ xn = x.
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(b) If for every c ∈ E with 0 ≪ c there is positive integer n0 such that for all
n,m > n0, d(xn, xm) ≪ c then the sequence {xn} is called a Cauchy sequence
in X.

(X, d) is called a complete cone metric space, if every Cauchy sequence in
X is convergent in X.

Lemma 2.5 [2]: Let (X, d) be a cone metric space, P be a normal cone
with normal constant K. Let {xn} be a sequence in X, then {xn} converges to
x if and only if d(xn, x) → 0 (n→ ∞).

Lemma 2.6 [2]: Let (X, d) be a cone metric space, P be a normal cone
with normal constant K. Let {xn} be a sequence in X, then {xn} is a Cauchy
sequence if and only if d(xn, xm) → 0 (n,m→ ∞).

Definition 2.7 : A function f : P → P is called subadditive if for all
x, y ∈ P, f(x+ y) ≤ f(x) + f(y).

Definition 2.8 : If Y be any partially ordered set with relation “ ≤ ” and
ψ : Y → Y , we say that ψ is non decreasing if x, y ∈ Y, x ≤ y ⇒ ψ(x) ≤ ψ(y).

Definition 2.9 [4]: Let ψ : P → P be a vector valued function then ψ is
called MS-Altering function if
(a) ψ is non decreasing, subadditive, continuous and sequentially convergent;
(b) ψ(a) = 0 if and only if a = 0.

We replace conditions (a) and (b) by weaker conditions and define cone altering
function as follows

Definition 2.10 : Let ψ : P → P be a vector valued function then ψ is
called cone altering function if
(a) ψ is non decreasing, subadditive;
(b) ψ(an) → 0 if and only if an → 0, for any sequence {an} in P.

Note that for cone altering function ψ on normal cone P, ψ(a) = 0 if and only
if a = 0.

Definition 2.11 : Let X be any nonempty set, f, g : X → X be mappings.
A point w ∈ X is called point of coincidence of f and g if there is x ∈ X such
that fx = gx = w.

Definition 2.12 : Let X be any nonempty set, f, g : X → X be mappings.
Pair (f, g) is called weakly compatible if x ∈ X, fx = gx⇒ fgx = gfx.

Lemma 2.13 : Let (X, d) be a cone metric space and P be a normal cone
in a real Banach space E, ψ is is a cone altering function and k1, k2, k > 0. If
xn → x, yn → y in X and ka ≤ k1ψ[d(xn, x)] + k2ψ[d(yn, y)], then a = 0.
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Lemma 2.14 : Let (X, d) be a cone metric space with normal cone P, and
f, g : X → X be mappings such that, for all x, y ∈ X

ψ[d(fx, fy)] ≤ a1ψ[d(gx, gy)]+a2ψ[d(fx, gx)]+a3ψ[d(fy, gy)]+a4ψ[d(fx, gy)]
+a5ψ[d(fy, gx)] ...(1)

where ai, i = 1, 2, 3, 4, 5 are nonnegative constants such that a1+a2+a3+a4+
a5 < 1 and ψ is a cone altering function. If f and g have a point of coincidence
then it is unique.
Proof: Let u is point of coincidence i.e. v ∈ X, u = fv = gv. If u′ is another
point of coincidence then there is v′ ∈ X such that u′ = fv′ = gv′. Now (1)
gives

ψ[d(fv, fv′)] ≤ a1ψ[d(gv, gv
′)] + a2ψ[d(fv, gv)] + a3ψ[d(fv

′, gv′)]

+a4ψ[d(fv, gv
′)] + a5ψ[d(fv

′, gv)]

ψ[d(u, u′)] ≤ a1ψ[d(u, u
′)] + a2ψ[d(u, u)] + a3ψ[d(u

′, u′)]

+a4ψ[d(u, u
′)] + a5ψ[d(u

′, u)]

= a1ψ[d(u, u
′)] + a4ψ[d(u, u

′)] + a5ψ[d(u
′, u)]

= (a1 + a4 + a5)ψ[d(u
′, u)]

since a1 + a4 + a5 < 1 hence by proposition 2.2, we have ψ[d(u′, u)] = 0 i.e.
d(u′, u) = 0 or u = u′. Hence point of coincidence is unique.

Proposition 2.15 : Let X be any nonempty set and f, g : X → X be map-
pings. If (f, g) is weakly compatible pair and have a unique point of coincidence
then it is unique common fixed point of f and g.

3 Main Results

Theorem 3.1 Let (X, d) be a cone metric space with normal cone P, and
f, g : X → X be mappings, ψ : P → P is cone altering function such that,
f(X) ⊂ g(X), for all x, y ∈ X, (1) is satisfied and f(X) or g(X) is complete,
then f and g have a unique point of coincidence. Furthermore if (f, g) is weakly
compatible pair then f, g have a unique common fixed point.
Proof: Let x0 ∈ X be arbitrary, we define sequence yn such that yn = fxn =
gxn+1 for all n ≥ 0.
If yn = yn+1 for any n, then yn = ym for all m > n hence {yn} is cauchy
sequence.
If yn 6= yn+1 for all n, then from (1)

ψ[d(fxn+1, fxn)] ≤ a1ψ[d(gxn+1, gxn)] + a2ψ[d(fxn+1, gxn+1)] + a3ψ[d(fxn, gxn)]

+a4ψ[d(fxn+1, gxn)] + a5ψ[d(fxn, gxn+1)]

ψ[d(yn+1, yn)] ≤ a1ψ[d(yn, yn−1)] + a2ψ[d(yn+1, yn)] + a3ψ[d(yn, yn−1)]

+a4ψ[d(yn+1, yn−1)]
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writing dn = d(yn, yn+1) we have

ψ[dn] ≤ a1ψ[dn−1] + a2ψ[dn] + a3ψ[dn−1] + a4ψ[dn] + a4ψ[dn−1]

(1− a2 − a4)ψ[dn] ≤ (a1 + a3 + a4)ψ[dn−1] ...(2)

using symmetry of (1) in x, y we have

(1− a3 − a5)ψ[dn] ≤ (a1 + a2 + a5)ψ[dn−1] ...(3)

combining (2) and (3)

ψ[dn] ≤
2a1 + a2 + a3 + a4 + a5

2− (a2 + a3 + a4 + a5)
ψ[dn−1] = λψ[dn−1]

and so ψ[dn] ≤ λnψ[d0], where λ = 2a1+a2+a3+a4+a5

2−(a2+a3+a4+a5)
< 1.

If m > n, we have

ψ[d(yn, ym)] ≤ ψ[d(yn, yn+1)] + ψ[d(yn+1, yn+2)] + ...+ ψ[d(ym−1, ym)]

≤ ψ[dn] + ψ[dn+1] + ... + ψ[dm−1]

≤ λnψ[d0] + λn+1ψ[d0] + ...+ λm−1ψ[d0]

≤
λn

1− λ
ψ[d0]

since 0 ≤ λ < 1 hence by normality of cone ‖ ψ[d(yn, ym)] ‖≤
Kλ

n

1−λ
‖ ψ[d0] ‖→ 0

therefore ψ[d(yn, ym)] → 0 and so d(yn, ym) → 0 hence {yn} is a cauchy se-
quence. Let f(X) is complete then since yn = fxn = gxn+1 and yn is cauchy
in f(X), so it must be convergent in f(X). Let yn → u ∈ f(X)(note that it
is also true if g(X) is complete with u ∈ g(X)). Since u ∈ f(X) ⊂ g(X), let
u = g(v) for some v ∈ X.

we show that gv = fv. Now by (1)

ψ[d(fv, u)] ≤ ψ[d(fv, fxn)] + ψ[d(fxn, u)]

≤ a1ψ[d(gv, gxn)] + a2ψ[d(fv, gv)] + a3ψ[d(fxn, gxn)]

+a4ψ[d(fv, gxn)] + a5ψ[d(fxn, gv)] + ψ[d(fxn, u)]

= a1ψ[d(u, yn−1)] + a2ψ[d(fv, u)] + a3ψ[d(yn, yn−1)]

+a4ψ[d(fv, yn−1)] + a5ψ[d(yn, u)] + ψ[d(yn, u)]

(1− a2 − a4)ψ[d(fv, u)] ≤ (a1 + a3 + a4)ψ[d(u, yn−1)] + (a3 + a5 + 1)ψ[d(yn, u)]

hence by lemma 2.13, ψ[d(fv, u)] = 0 and so d(fv, u) = 0 i.e. fv = u = gv.

Thus u is point of coincidence of f and g, hence by lemma 2.14 it is unique.
Furthermore if pair (f, g) is weakly compatible then by proposition 2.15, u is
unique common fixed point of f and g.
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If we choose g = IX i.e. identity mapping of X and f = T, we get the main
result of [4] as the following corollary.

Corollary 3.2 [4] Let (X, d) be any complete cone metric space with nor-
mal cone P and T be a self map on X, ψ : P → P be MS-Altering function
satisfying

ψ[d(Tx, Ty)] ≤ a1ψ[d(x, y)]+ a2ψ[d(Tx, x)]+ a3ψ[d(Ty, y)]+ a4ψ[d(Tx, y)]
+ a5ψ[d(Ty, x)]

where ai, i = 1, 2, 3, 4, 5 are nonnegative constants such that a1+a2+a3+a4+
a5 < 1, then T has a unique fixed point.

If we choose ψ = IP i.e. identity mapping of P, we get the following corollary.

Corollary 3.3 Let (X, d) be any cone metric space with normal cone P
and f, g be self maps on X such that, f(X) ⊂ g(X), f(X) or g(X) is complete
and,
d(fx, fy) ≤ a1d(gx, gy)+a2d(fx, gx)+a3d(fy, gy)+a4d(fx, gy)+a5d(fy, gx)
where ai, i = 1, 2, 3, 4, 5 are nonnegative constants such that a1+a2+a3+a4+
a5 < 1. If pair (f, g) is weakly compatible then f, g have a unique common fixed
point.

ACKNOWLEDGEMENTS. Authors gratefully acknowledge support pro-
vided by Shri Vaishnav Institute of Technology and Science.

References

[1] D. Delbosco, Un’estensione di un teorema sul punto fisso di S. Reich,
Rend. Sem. Mat. Univers. Politean, Torino, 35 (1976-77), 233-238.

[2] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of
contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.

[3] D.llic, V. Rakocevic , Qusai-contraction on a cone metric space, applied
Mathematics Letter, 22(5) (2009), 728-731.

[4] S. K. Malhotra, S. Shukla and R. Sen, Common Fixed Point Theorems
In Cone Metric Spaces by Altering Distences, International Mathematical
Forum, 54(6) (2011), 2665-2671.

[5] Sh. Rezapour, R. Hamlbarani, Some notes on the paper Cone metric
spaces and fixed point theorems of contractive mappings, J. Math. Anal.
Appl., 345(2008) , 719-724.

[6] F. Skof, Teorema di punti fisso per applicazioni negli spazi metrici,
atti.Accad. Sci.Torino, 111 (1997), 323-329.

Received: August, 2011


