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Abstract

In this paper, by using diffusion approximation we derive the proba-
bility distribution of time to extinction of the Galton-Watson branching
process. It is shown that this probability distribution can be expressed
in terms of Laguerre polynomials.
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1 Introduction

Consider a Galton-Watson branching process {X(t), t ∈ T = (0, 1, . . . , )} with
progeny distribution {qj, j = 0, 1, . . . , }. Let µ and σ2 denote the mean and
the variance of the progeny distribution respectively. Then, the fundamen-
tal theorem of the branching process indicates that the probability that the
process will eventually be distinct is one if and only if (iff) µ is less than
or equal to 1 ( for proof, see Karlin and Taylor [1], p. 396 ). That is,
limt→∞ P{X(t) = 0|X(0) = i} = 1 iff µ ≤ 1 for any positive integer i.

Let φ(t; i) be the probability that the process absorbs into 0 for the first
time at time t given X(0) = i. Then

∑∞
t=1 φ(t; i) = 1 iff µ ≤ 1. That is, given

that µ ≤ 1, φ(t; i) is the probability density function (pdf) of the first absorp-
tion time Ta of the process. In many practical problems, it is of considerable
interest to find φ(t; i). For example, in human beings, it is well documented
that many of the inherited diseases are caused by mutation of certain genes;
see (Jorde et al. [2], and Scriver et al.[3]). Hence, it is extremely useful to
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derive the probability distribution of extinction of deleterious mutants.

How to derive φ(t; i)? For general progeny distributions, the problem re-
mains unsolved. In this paper, by using the diffusion approximation, we will
provide an approximate solution to this problem. We will derive the prob-
ability distribution of first time absorption in branching processes. We will
illustrate how to derive the probability of distinction of new mutants in hu-
man populations.

2 Preliminary Notes

Suppose that the mean µ of the progeny distribution is µ = 1 + 1
N
α+O(N−2),

where N is very large. Then, µ ≤ 1 iff α ≤ 0. Thus, if α ≤ 0, φ(t; i) is the pdf
of the first absorption time Ti of the process given X(0) = i. Let Y (t) = 1

N
X(t)

and let one time unit dt corresponding to 1
N

. Then it can be shown that to order
of O(N−2), {Y (t), t ≥ 0} is a diffusion process with state space Ω = [0,∞)
and with diffusion coefficients {m(y) = α y = −ξy, v(y) = y σ2}, where
ξ = −α ≥ 0. This result was first proved by Feller [4]. We state this result as
in the following theorem.

Theorem 2.1 To order of O(N−2), {Y (t), t ≥ 0} is a diffusion process with
state space Ω = [0,∞) and with diffusion coefficients {m(y) = −yξ, v(y) =
yσ2}.

For proof, see Feller[4] or Tan ([6], Chapter 6).

3 Main Result 1. The Transition Probability

Distribution of Diffusion Process

Let f(x, y; t) be the conditional pdf of Y (t) given Y (0) = i
N

= x. By Theorem
(2.1), to order of O(N−2), f(x, y; t) satisfies the following backward equation
with initial condition f(x, y; 0) = δ(y−x), where δ(x) is the Dirac’s δ function
defined by

∫∞
−∞ f(x)δ(x)dx = f(0) for any integrable function f(x) over the

real line:

∂

∂t
f(x, y; t) = m(x)

∂

∂x
f(x, y; t) +

1

2
v(x)

∂2

∂x2
f(x, y; t). (1)

The following theorem shows that the solution of equation (1) can be ex-
pressed in terms of Laguerre polynomials. ( For basic properties of Laguerre
polynomials, see [6], Chapter 1 ).
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Theorem 3.1 If ξ > 0, then the solution f(x, y; t) of equation (1) under
the initial condition f(x, y; 0) = δ(y − x) is given by:

f(x, y; t) = β(β x)e−β y
∞∑
k=1

1

k
e−kξ tL

(2)
k−1(β x)L

(2)
k−1(β y), (2)

where β = 2ξ/σ2 and L
(2)
k−1(x) the (k−1)− th degree Laguerre polynomial with

parameter 2.

Proof

To prove Theorem (3.1), write f(x, y; t) = f(x, t) by suppressing y and let
f(x, t) = h(x)e−λ t, where λ is a constant. Then h(x) satisfies the equation:

xσ2 d
2

dx2
h(x)− 2ξ x

d

dx
h(x) + 2λ h(x) = 0. (3)

In the above equation, the λ’s ( say λj ) satisfying the above equation are

the eigenvalues of the operator S = σ2

2
x d2

dx2
−ξ x d

dx
and the solution hj(x) with

λ = λj in equation (3) is an eigenfunction corresponding to the eigenvalue λj.
The general solution f(x, y; t) = f(x, t) of equation (2) is given by:

f(x, y; t) = f(x, t) =
∑
j

Cjhj(x)e−λj t, (4)

where the Cj’s are constants to be determined by the initial condition f(x, y; 0) =
f(x, 0) = δ(y − x).

To find these eigenvalues and the associated eigenfunctions, consider the
series solution h(x) =

∑∞
i=0 aix

i. On substituting this series solution into
equation (3) and equating to zero the coefficient of xk for k = 0, 1, . . ., we
obtain a0 = 0 and for k = 1, . . . ,∞,

ak+1 =
2

(k + 1)kσ2
(kξ − λ)ak.

In order that the solution is finite for finite x and not identically 0, we must
require that a1 6= 0 and λ− ξ k = 0, or λk = ξ k, for k = 1, . . . ,∞.

Now, given λ = kξ we have ak+j = 0 for all j = 1, . . . , and for j = 2, . . . , k:

aj =
2ξ(j − 1− k)

j(j − 1)σ2
aj−1

=
1

j!(j − 1)!
(2ξ/σ2)j−1(j − 1− k) . . . (1− k)a1
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= (−β)j−1 1

j!

(
k − 1

j − 1

)
a1

= (−β)j−1 1

Γ(j + 1)

(
k − 1

j − 1

)
a1,

where β = 2ξ/σ2.
Hence, given λ = λk = kξ, the solution of equation (3) is

hk(x) =
k∑
j=1

ajx
j = a1

k∑
j=1

(−β)j−1

(
k − 1

j − 1

)
xj

1

Γ(j + 1)

= a1x
k∑
j=1

(−1)j−1 1

Γ(j + 1)

(
k − 1

j − 1

)
(β x)j−1

=
a1

k
x

1

(k − 1)!

k−1∑
j=0

(−1)j
(
k − 1

j

)
(β x)j

Γ(k − 1 + 2)

Γ(j + 2)

=
a1

k
xL

(2)
k−1(βx),

where L
(ω)
k (x) = 1

(k)!

∑k
j=0(−1)j

(
k
j

)
(x)j Γ(k+ω)

Γ(j+ω)
is the kth degree Laguerre poly-

nomial with parameter ω; see Tan and Tiku ([6], Chapter 1).

Using these results, the general solution of equation (1) is

f(x, y; t) = x
∞∑
k=1

Cke
−ξ ktL

(2)
k−1(βx), (5)

where the Ck’s are constants to be determined by the conditions f(x, y; 0) =
δ(y − x) for all x > 0.

Now by the basic property of Laguerre polynomials as given in Tan and
Tiku ([6], p 6), we have:∫ ∞

0
L

(2)
k (x)L

(2)
j (x)xe−xdx = 0 if j 6= k

=

(
k + 2− 1

k

)
= k + 1 if j = k.

Multiplying both sides of equation (4) by e−βxL
(2)
j−1(βx), putting t = 0 and

integrating the function from 0 to ∞, we obtain:

e−β yL
(2)
j−1(y) = Cj

∫ ∞
0

x[L
(2)
j−1(β x)]2e−β xdx

= Cjβ
−2
∫ ∞

0
[L

(2)
j−1(x)]2xe−xdx

= Cjβ
−2

(
j − 1 + 2− 1

j − 1

)
= jCjβ

−2.
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Thus, Cj = 1
j
β2L

(2)
j−1(β y)e−β y for j = 1, . . . ,∞ so that,

f(x, y; t) = β(β x)e−β y
∞∑
k=1

1

k
e−kξtL

(2)
k−1(β x)L

(2)
k−1(β y). (6)

Q.E.D.

Let Q(t;x) be the probability of 0 < Y (t) given Y (0) = i
N

= x. Then

Q(t;x) =
∫ ∞

0
f(x, y; t)dy. (7)

To derive Q(t;x), notice that

β
∫ ∞

0
e−β yL

(2)
k−1(βy)dy =

∫ ∞
0

e−yL
(2)
k−1(y)dy

=
Γ(k − 1 + 2)

(k − 1)!

k−1∑
j=0

(−1)j
(
k − 1

j

)
1

Γ(j + 2)

∫ ∞
0

e−zzjdz

= k
k−1∑
j=0

(−1)j
(
k − 1

j

)
1

(j + 1)

= k
∫ 1

0
{
k−1∑
j=0

(−1)j
(
k − 1

j

)
xj}dx

= k
∫ 1

0
(1− x)k−1dx = 1.

Thus,

Q(t;x) =
∫ ∞

0
f(x, y; t)dy = (β x)

∞∑
k=1

1

k
e−kξtL

(2)
k−1(βx)β

∫ ∞
0

e−β yL
(2)
k−1(βy)dy

= (β x)
∞∑
k=1

1

k
e−kξtL

(2)
k−1(βx). (8)

4 Main Result 2. The Probability Distribu-

tion of First Absorption Time

To derive the pdf g(t;x) of the first absorption time into the state 0 given
Y (0) = x, denote by G(t;x) the absorption probability into 0 at or before time
t given Y (0) = x. (Note that Y (t) = 1

N
X(t).) Since 0 is the only absorbing

state (persistent state),

G(t;x) = 1−Q(t;x) = 1− (β x)
∞∑
k=1

1

k
e−kξtL

(2)
k−1(βx). (9)
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It follows that

g(t;x) =
∂

∂t
G(t;x) =

∂

∂t
{1−Q(t;x)}

= (β x)ξ
∞∑
k=1

e−kξtL
(2)
k−1(βx). (10)

Notice that limt→∞Q(t;x) = 0 for all x > 0 so that limt→∞G(t;x) = 1 for
all x > 0. This is equivalent to stating that with probability one the process
will eventually be absorbed into the state 0 starting with X(0) = i > 0. The
next theorem shows that

∫∞
0 g(t;x)dt = 1 for all x > 0 so that g(t;x) is indeed

a pdf for all given x > 0. For proving the next theorem, we first prove the
following lemma.

Lemma 4.1 If β > 0, then

ψr(x) = (β x)
∞∑
k=1

1

kr
L

(2)
k−1(βx) = 1 for all x > 0 and for all r ≥ 1.

Proof

By the unicity theorem of Laplace transform ( see Widder [7]), it suffices
to show that ∫ ∞

0
e−βx{ψr(x)− 1}dx = 0.

Now ∫ ∞
0

e−βxdx = β−1,

and∫ ∞
0

e−xxL
(2)
k−1(x)dx =

Γ(k − 1 + 2)

(k − 1)!

k−1∑
j=0

(−1)j
(
k − 1

j

)
1

Γ(j + 2)

∫ ∞
0

xj+1e−xdx

= k
k−1∑
j=0

(−1)j
(
k − 1

j

)
= δ1k.

It follows that∫ ∞
0

e−βxψr(x)dx =
∞∑
k=1

1

kr

∫ ∞
0

e−β x(β x)L
(2)
k−1(βx)dx

= β−1
∞∑
k=1

1

kr

∫ ∞
0

e−xx L
(2)
k−1(x)dx = β−1

∞∑
k=1

1

kr
δ1k = β−1.

Thus,∫ ∞
0

e−βx{ψr(x)− 1}dx = 0 so that ψr(x) = 1 for all x > 0.Q.E.D.
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Theorem 4.2 If x > 0, then∫ ∞
0

g(t;x)dt = 1.

Proof

To prove Theorem (4.2), denote by
∫∞

0 g(t;x)dt = ψ(x). Then

ψ(x) = (β x)
∞∑
k=1

1

k
L

(2)
k−1(βx).

From Lemma (4.1), ψ(x) = 1 for all x > 0. Q.E.D.

Using the result from Lemma (4.1), it is easy to show that the mean value
of first absorption time given Y (0) = x is (βx)ξ−1 for all x > 0. Similarly,
the variance of first absorption time given Y (0) = x is (βx)(1− βx)ξ−2 for all
x > 0.

5 Some Applications.

To illustrate, consider a large haploid population. Suppose that at the t0-th
generation, a mutant gene is introduced into the population; with no loss of
generality we let t0 = 0. Suppose further that each mutant gene produces
j mutant genes with probability pj (j = 0, 1, . . . ,∞) in the next generation
independently of other genes. Let X(t) be the number of the mutant gene
at generation t. Then X(t) is a branching process with progeny distribution
{pj, j = 0, 1, . . . ,∞}.

To specify pj, let the fitness (i.e. average number of progenies per gener-
ation) of the wild gene and the mutant be given by µ and µ(1 + v) (µ > 0)
respectively. Let N be the population size. Then in the 0th generation, the
frequency of the mutant is

(1 + v)µ

(N − 1 + 1 + v)µ
=

1

N
(1 + v) + o((N)−1) = p+ o((N)−1)

for finite v, where p = 1
N

(1+v). When N is sufficiently large, and if the mating
is random, then to order of o(N−1), the probability that there are j mutants
in the next generation is

pj =

(
N

j

)
pj(1− p)N−j.
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Since λ = Np = (1 + v) + (N)o(N−1) → (1 + v) as N → ∞, when N is
sufficiently large, 1 + v is the average number of progenies of the a allele and

pj ∼ e−(1+v) (1 + v)j

j!
, j = 0, 1, 2, . . . .

Since the new mutants are usually slightly disadvantageous when comparing
with the wild genes, one may assume that −v = α

N
+ o(N−1) > 0 for some

constant α. Then, by the fundamental theorem of branching process, the
probability is one that the new mutant will eventually be extinct. The pdf of
the probability distribution of first time absorption is then given by equation
(10) with α = ξ in the previous section.
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