Series that can be differentiated term-wise m times if the function is m -smooth

 $\rm A.~G.~Ramm^{\ddagger 3}$

†Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA

Abstract

Let $f \in C^m(-\pi,\pi)$, where $m > 0$ is an integer. An algorithm is proposed for representing f as a convergent series which admits m times term-wise differentiation. This algorithm is illustrated by numerical examples. It can be used, for example, for acceleration of convergence of Fourier series. The algorithm is generalized to the case when f is piecewise- $C^m(-\pi, \pi)$ function with known positions of finitely many jump discontinuities and the sizes of the jumps and to the case when these positions and the sizes of the jumps are unknown. A jump discontinuity point s is a point at which at least one of the quantities $d_j := f^{(j)}(s-0) - f^{(j)}(s+0) \neq 0$, where $0 \leq j \leq m$.

Mathematics Subject Classification: 40A30, 42A20, 65B10

Keywords: Series; convergence rates; term-wise differentiation

1 Introduction. Formulation of the results.

Suppose that $f \in C^m(-\pi, \pi)$, where $m > 0$ is an integer. If one expands f into 2π -periodic Fourier series, then, in general, the extended 2π -periodic function has jump discontinuities at the points π and $-\pi$, and the corresponding Fourier series of this function f

$$
f(x) = \sum_{n = -\infty}^{\infty} f_n e^{inx}
$$
 (1)

has Fourier coefficients

$$
f_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx
$$
 (2)

[‡]Corresponding author. Email: ramm@math.ksu.edu

of the order $O(n^{-1})$, and cannot be term-wise differentiated $m > 0$ times.

The goal in this paper is to find a series, representing $f \in C^m(T)$ on the interval $T := [-\pi, \pi]$ and such that it can be m times term-wise differentiated:

$$
f^{(j)} = \sum_{n} c_n \phi_n^{(j)}(x), \qquad 0 \le j \le m.
$$
 (3)

This statement of the problem apparently is new, but it has close relation with classical problems, for example, with methods of acceleration of convergence of Fourier series ($\boxed{7}$), with estimating a function from a truncated Fourier series $(\Pi, \mathbb{Z}, \mathbb{Z})$, with stable differentiation of piecewise-smooth functions and edge detection $(|8|, |9|, \text{pp. } 197-217)$.

Therefore the problem we have stated is of interest both theoretically and in applications.

A related basic result in analysis is a theorem of A.Haar, which says that the Fourier-Haar series converges uniformly for any continuous on [0, 1] function f to this function $([5])$ $([5])$ $([5])$.

Our goal can be achieved in many ways. Let us propose a simple way that can be used numerically and is similar to one of the methods of acceleration of the rate of decay of the Fourier coefficients $([7])$ $([7])$ $([7])$.

Step 1.

Choose a polynomial $P_{2m+1}(x)$ of degree $2m+1$,

$$
P_{2m+1}(x) = \sum_{k=0}^{2m+1} a_k x^k
$$
 (4)

such that

$$
f^{(j)}(\pi) = P_{2m+1}^{(j)}(\pi), \qquad f^{(j)}(-\pi) = P_{2m+1}^{(j)}(-\pi), \qquad 0 \le j \le m. \tag{5}
$$

These conditions yield a linear algebraic system for the unknown $2m + 2$ coefficients a_k , $0 \le k \le 2m + 1$. We prove in Lemma [1.2](#page-2-0) below that this linear algebraic system has a solution and this solution is unique. Therefore the polynomial $P_{2m+1}(x)$ is uniquely determined by the above linear algebraic system.

Denote

$$
g(x) := f(x) - P_{2m+1}(x).
$$
 (6)

Then

$$
g^{(j)}(-\pi) = g^{(j)}(\pi) = 0, \qquad 0 \le j \le m.
$$
 (7)

Therefore, the Fourier series of the function $g(x)$ on the interval T can be m-times term-wise differentiated:

$$
g^{(j)}(x) = \sum_{n} g_n(in)^j e^{inx}, \qquad 0 \le j \le m,
$$
 (8)

Series that can be differentiated term-wise m times 139

where

$$
g_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x)e^{-inx} dx.
$$
 (9)

Step 2. Therefore the series

$$
f(x) = P_{2m+1}(x) + \sum_{n} g_n e^{inx}
$$
 (10)

can be m times term-wise differentiated.

This is proved in Lemma [1.3](#page-2-1) below.

Combining these results yields the following Theorem.

Theorem 1.1 If $f \in C^m(T)$ and $P_{2m+1}(x)$ satisfies conditions $(\mathbf{5})$, then the series (10) can be m times term-wise differentiated.

The Fourier series, obtained after the m−th term-wise differentiation converges, in general, in $L^2(T)$.

Lemma 1.2 Conditions $[5]$ determine $P_{2m+1}(x)$ uniquely.

Proof. Since conditions $[5]$ constitute a linear algebraic system with the $2m+$ 2 unknowns a_k , it is sufficient to prove that the corresponding homogeneous system has only the trivial solution. The corresponding homogeneous system says that polynomial $P_{2m+1}(x)$ of degree $2m+1$ has zeros at the points π and $-\pi$ of multiplicity $m + 1$ each, so it has $2m + 2$ zeros counting multiplicities. This implies that $P_{2m+1}(x) = 0$ identically. Consequently, $a_k = 0$ for $0 \le k \le$ $2m + 1$. Lemma [1.2](#page-2-0) is proved.

Lemma 1.3 If conditions $\boxed{7}$ hold, then relation $\boxed{8}$ holds.

Proof. Integrating by parts m times the formula for g_n and using the conditions

$$
g^{(j)}(\pi) = g^{(j)}(-\pi) = 0, \qquad 0 \le j \le m,
$$

one gets

$$
g_n = \frac{1}{2\pi (in)^m} \int_{-\pi}^{\pi} g^{(m)}(x) e^{-inx} dx.
$$

Since $g^{(m)}(x) \in C(T)$, its Fourier coefficients are in ℓ^2 . Consequently, relation (8) [h](#page-1-2)olds. Lemma 1[.3](#page-2-1) is proved. \Box

If the polynomial $P_{2m+1}(x)$ is found, then the series

$$
f(x) = P_{2m+1}(x) + \sum_{n=-\infty}^{\infty} g_n e^{inx}
$$
 (11)

can be m−times differentiated term-wise, so we have achieved the goal.

The conclusion of the Theorem is an immediate consequence of Lemmas [1.2](#page-2-0) and [1.3.](#page-2-1)

If one assumes that f is piecewise-smooth in T , that is, there are finitely many discontinuity points $s_p \in (-\pi, \pi)$, $1 \leq p \leq P$, the jumps values $h_p^{(j)} :=$ $|f^{(j)}(s_p - 0) - f^{(j)}(s_p + 0)|$, $0 \le j \le m$, and the positions of the jumps are known, that is, the numbers s_p are known, then one may use a method similar to the one that was described above. Namely, the function f is now not a $C^m(T)$ function, but piecewise- $C^m(T)$ function. Suppose for simplicity that there is only one discontinuity point s_1 . Then define a polynomial $Q_{m,1}$ of degree m from the conditions similar to (5) :

$$
f^{(j)}(s_1 - 0) - Q^{(j)}_{m,1}(s_1) = f^{(j)}(s_1 + 0), \qquad 0 \le j \le m.
$$
 (12)

These conditions yield a linear algebraic system for the unknown $m + 1$ coefficients $q_{k,1}, 0 \leq k \leq m$, of the polynomial $Q_{m,1}$.

As in Lemma [1.2,](#page-2-0) one proves that the polynomial $Q_{m,1}$ of degree m is uniquely determined by the conditions (12) . The function $f_1(x) = f(x)$ $Q_{m,1}(x)$ in $(-\pi, s]$, $f_1(x) = f(x)$ in $[s, \pi)$, is $C^m(T)$ function, and to this function one may apply Theorem **[1.1.](#page-2-3)** If there are several discontinuity points, then one uses similar method and the number P of the polynomials $Q_{m,p}$ is equal to the number of discontinuity points.

Let us consider now a more difficult problem when the position of discontinuity points s_p is not known. For simplicity assume that there is just one discontinuity point $s \in T$.

The algorithm starts with finding the position of s. This can be done by using the method from $\boxed{8}$, where the case of noisy measurements of the function f was treated. In the simpler case when the values of f are given exactly, the algorithm for locating the position of the jump s can be considerably simplified. One may use the following algorithm for locating the discontinuity point with the jump h, defined above. Denote $M := \sup_{x \in T, x \neq s} |f'(x)|$. Choose an integer N such that $M\pi/N < h/8$. Consider a partition of T by the points x_i , $x_i := -\pi + i2\pi/N, 0 \leq i \leq N$. Then on any interval (x_i, x_{i+1}) which does not contain s, one has $d_i := |f_i - f_{i+1}| \leq 2\pi M/N < h/4$, while on the interval, containing s, one has $d_i > 7h/8$. Thus, calculating d_i for $0 \leq i \leq N$ one finds the interval of length $2\pi/N$ where the jump point s is located. Increasing N one can find the position of s with any desired accuracy if f is known exactly, that is noise-free. If f is known with some noise, then the algorithm from $[8]$

can be applied for finding the position of the discontinuity point s. In this case s cannot be located with an arbitrary desired accuracy.

Let us describe a method for representing a piecewise- $C^m(R)$ function f as a series which can be term-wise differentiated m times. This method is more general than the one described above, it does not requre finding the polynomial $P_{2m+1}(x)$.

Let s_k be a jump discontinuity point of $f, 1 \leq k \leq K$,

$$
d_{k,j} := f^{(j)}(s_k - 0) - f^{(j)}(s_k + 0), \qquad 0 \le j \le m, \qquad q := \min_{1 \le k \le K} |s_k - s_{k+1}|.
$$
\n(13)

Let $h(x) = 0$ for $x \le 0, 0 \le h(x) \le 1, h(x) = 1$ for $x \in (0, 0.5q), h(x) = 0$ for $x \geq 0.9q$, $h \in C^{\infty}(0, q)$, and

$$
f_1(x) := f(x) + Q_K(x), \qquad Q_K(x) := \sum_{k=1}^K \sum_{n=0}^m d_{k,n} \frac{(x - s_k)^n}{n!} h(x - s_k), \quad (14)
$$

where

$$
d_{k,n} := f^{(n)}(s_k - 0) - f^{(n)}(s_k + 0). \tag{15}
$$

Theorem 1.4 The function f_1 is $C^m(R)$ if f is piecewise- $C^m(R)$ function with jump discontinuity points s_k and the sizes of the jumps $d_{k,n}$, $1 \leq k \leq K$, $0 \leq n \leq m$.

Proof. By definition, the function $f_1 \in C^m(\Delta)$ if Δ does not contain discontinuity points of f. Therefore to prove Lemma \Box 2 it is sufficient to check that

$$
f_1^{(j)}(s_k - 0) = f_1^{(j)}(s_k + 0), \qquad 0 \le j \le m, \quad 1 \le k \le K. \tag{16}
$$

Let us verify [\(15\)](#page-4-0) for an arbitrary $k \leq K$ and an arbitrary $j \leq m$.

We will use the following formula:

$$
[x^n h(x)]^{(j)}|_{x=+0} = 0, \quad j < n \text{ or } j > n; \quad [x^n h(x)]^{(n)}|_{x=+0} = n!; \quad [x^n h(x)]^{(j)}|_{x=-0} = 0. \tag{17}
$$

Let us check this. By the Leibniz formula one has:

$$
[x^{n}h(x)]^{(j)}(x) = \sum_{i=0}^{j} C_{i}^{j}(x^{n})^{(i)}h^{(j-i)}(x).
$$
 (18)

If $j < n$ then $n - i > j - i$, and $(x^n)^{(i)} = \frac{n!}{i!}$ $\frac{n!}{n!}x^{n-i}, h^{(p)}(x) = \delta^{(p-1)}(x) + \eta_p(x),$ $p \geq 0$ is an integer, $\delta(x)$ is the delta-function, $\eta_p(x) \in C_0^{\infty}(R)$. One has $x^{\mu}\delta^{(\nu-1)}(x)=0$ if $\mu \geq \nu > 0$. Therefore $(x^n)^{(i)}h^{(j-i)}(x)=0$ if $j < n$. If $j > n$ then the summation in [\(17\)](#page-4-1) is up to $i = n$, because $(x^n)^{(i)} = 0$ if $i > n$. If

.

 $j = n$, then in the sum in [\(18\)](#page-4-2) only the term with $i = n$ does not vanish, and this term is equal to $n!$. Thus, formula (16) is verified.

From this formula the conclusion of Theorem [1.4](#page-4-4) follows. Indeed,

$$
f_1^{(j)}(s_k + 0) = f^{(j)}(s_k + 0) + d_{k,j} = f^{(j)}(s_k - 0) = f_1^{(j)}(s_k - 0). \tag{19}
$$

Theorem 1.4 is proved. \Box

The function $h(x)$ can be constructed analytically.

2 Numerical results

2.1 Computing the coefficients of P_{2m+1}

Let

$$
P_{2m+1}(x) = \sum_{i=0}^{2m+1} c_i x^i, \qquad m = 0, 1, 2, ..., \qquad (20)
$$

Let us find the coefficients of P_{2m+1} from the following equations

$$
P_{2m+1}^{(k)}(\pi) = f^{(k)}(\pi), \qquad P_{2m+1}^{(k)}(-\pi) = f^{(k)}(-\pi), \qquad k = 0, ..., m. \tag{21}
$$

From equations [\(20\)](#page-5-0) and [\(21\)](#page-5-1) one gets a linear algebraic system of $2m + 2$ equations with $2m + 2$ unknowns $(c_i)_{i=0}^{2m+1}$:

$$
\begin{pmatrix}\nM_{m+1}(\pi) \\
M_{m+1}(-\pi)\n\end{pmatrix}\n\begin{pmatrix}\nc_{2m+1} \\
c_{2m} \\
\vdots \\
c_0\n\end{pmatrix} =\n\begin{pmatrix}\ng(\pi) \\
g(-\pi)\n\end{pmatrix}, \qquad g(x) =\n\begin{pmatrix}\nf(x) \\
f^{(1)}(x) \\
\vdots \\
f^{(m)}(x)\n\end{pmatrix}
$$
\n(22)

where

$$
M_n(x) = \begin{pmatrix} x^{2n-1} & x^{2n-2} & \cdots & 1\\ (2n-1)x^{2n-2} & (2n-2)x^{2n-3} & \cdots & 0\\ (2n-1)(2n-2)x^{2n-3} & (2n-2)(2n-3)x^{2n-4} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ (2n-1)(2n-2)\cdots(n+1)x^n & (2n-2)(2n-3)\cdots nx^{n-1} & \cdots & 0 \end{pmatrix}
$$
(23)

The condition number of the matrix

$$
H_n := \begin{pmatrix} M_n(\pi) \\ M_n(-\pi) \end{pmatrix} \tag{24}
$$

increases very fast when *n* increases (see Table \Box). Thus, it is difficult to compute c_i , $i = 1, ..., 2m + 1$, with high accuracy from equation (22) (22) if m is large.

Series that can be differentiated term-wise m times 143

Let us propose an alternative way to compute $(c_i)_{i=0}^{2m+1}$ $_{i=0}^{2m+1}$. One has

$$
P_{2m+1}(x) = \sum_{i=0}^{m} f^{(i)}(\pi)U_i(x) + \sum_{i=0}^{m} f^{(i)}(-\pi)L_i(x),
$$
\n(25)

where L_i and U_i are polynomials of degree $2m + 1$ satisfying

$$
L_i^{(j)}(-\pi) = U_i^{(j)}(\pi) = \delta_{ij}, \qquad L_i^{(j)}(\pi) = U_i^{(j)}(-\pi) = 0, \qquad i, j = 0, ..., m.
$$
\n(26)

Let us find L_i and U_i . From the second equation in (26) , one gets

$$
L_k(x) = (x - \pi)^{m+1} \sum_{i=0}^{m} \ell_{k,i}(x + \pi)^i, \qquad k = 0, ..., m.
$$
 (27)

This implies

$$
\sum_{i=0}^{m} \ell_{k,i}(x+\pi)^i = \frac{L_k(x)}{(x-\pi)^{m+1}}, \qquad k = 0, ..., m.
$$
 (28)

From equation [\(28\)](#page-6-1) one obtains

$$
\ell_{k,i} = \frac{1}{i!} \frac{d^i}{dx^i} \left(\frac{L_k(x)}{(x - \pi)^{m+1}} \right) |_{x = -\pi}, \qquad k = 0, ..., m.
$$
 (29)

This, the Leibniz rule, and (26) imply

$$
\ell_{k,i} = \begin{cases} \frac{C_i^k}{i!} \frac{d^{i-k}}{dx^{i-k}} \left(\frac{1}{(x-\pi)^{m+1}} \right) |_{x=-\pi} & \text{if } i \ge k \\ 0 & \text{if } i < k \end{cases} \tag{30}
$$

If $i \geq k$ then

$$
\ell_{k,i} = \frac{C_i^k}{i!} \frac{d^{i-k}}{dx^{i-k}} \left(\frac{1}{(x-\pi)^{m+1}} \right) |_{x=-\pi}
$$

=
$$
\frac{1}{k!(i-k)!} (-1)^{i-k} (m+1)(m+2)...(m+i-k) \frac{1}{(-2\pi)^{m+i-k+1}}
$$
(31)
=
$$
\frac{1}{k!(i-k)!} \frac{(-1)^{m+1} (m+i-k)!}{m!(2\pi)^{m+i-k+1}}.
$$

Therefore,

$$
L_k(x) = (x - \pi)^{\frac{(n+1)}{k} \cdot \frac{k!}{k! \cdot (n-k)! \cdot m! (2\pi)^{m+i-k+1}} (x + \pi)^i, \qquad k = 0, 1, ..., m.
$$
\n(32)

By a similar argument one obtains

$$
U_k(x) = (x + \pi)^{m+1} \sum_{i=0}^{m} u_{k,i}(x - \pi)^i, \qquad k = 0, ..., m,
$$
 (33)

where

$$
u_{k,i} = \begin{cases} \frac{1}{k!(i-k)!}(-1)^{i-k}(m+1)(m+2)...(m+i-k)\frac{1}{(2\pi)^{m+i-k+1}} & \text{if } i \ge k\\ 0 & \text{if } i < k. \end{cases}
$$
(34)

So

$$
U_k(x) = (x + \pi)^{m+1} \sum_{i=k}^{m} \frac{(-1)^{i-k}(m+i-k)!}{k!(i-k)!m!(2\pi)^{m+i-k+1}} (x - \pi)^i, \qquad k = 0, 1, ..., m.
$$
\n(35)

2.2 Computing Fourier coefficients

In our experiments the coefficients of the Fourier series are computed by Filon's method, which yields an accurate results when one computes integral of oscillating functions ([\[3\]](#page-10-2)).

According to Filon's method (see, e.g., [\[3\]](#page-10-2), p.151-153), one uses the following formulas:

$$
\int_{a}^{b} f(x) \cos(kx) dx \approx h\left(\alpha[f(b)\sin(kb) - f(a)\sin(ka)] + \beta C_{2n} + \gamma C_{2n-1}\right),
$$

$$
\int_{a}^{b} f(x) \sin(kx) dx \approx h\left(-\alpha[f(b)\cos(kb) - f(a)\cos(ka)] + \beta S_{2n} + \gamma S_{2n-1}\right),
$$
(36)

where

$$
\alpha = \alpha(\theta) = \frac{\theta^2 + \theta \sin \theta \cos \theta - 2 \sin^2 \theta}{\theta^3},
$$

\n
$$
\beta = \beta(\theta) = \frac{2[\theta(1 + \cos^2 \theta) - 2 \sin \theta \cos \theta]}{\theta^3}, \qquad \theta := hk, \qquad h = \frac{b - a}{2n},
$$
 (37)
\n
$$
\gamma = \gamma(\theta) = \frac{4(\sin \theta - \theta \cos \theta)}{\theta^3},
$$

Series that can be differentiated term-wise m times 145

and

$$
C_{2n} = \sum_{j=1}^{n-1} f(x_{2j}) \cos(kx_{2j}) + \frac{1}{2} [f(a) \cos(ka) + f(b) \cos(kb)], \qquad x_j = a + jh,
$$

\n
$$
C_{2n-1} = \sum_{j=1}^{n} f(x_{2j-1}) \cos(kx_{2j-1}),
$$

\n
$$
S_{2n} = \sum_{j=1}^{n-1} f(x_{2j}) \sin(kx_{2j}) + \frac{1}{2} [f(a) \sin(ka) + f(b) \sin(kb)],
$$

\n
$$
S_{2n-1} = \sum_{j=1}^{n} f(x_{2j-1}) \sin(kx_{2j-1}).
$$
\n(38)

2.3 Numerical experiments

Numerical experiments are done with the function $f(x) = e^x$. In our experiments, we use Filon's method to compute the Fourier coefficients of $f(x)$ − $P_{2m+1}(x)$.

n cond (H_n) 2 59.5 3 992.2 4 23417.8 5 725022.5 6 28011136.4 7 1302272486.5 8 70885319047.2 9 4423628332689.4 10 311370017168572.4

	Table 1: Condition number of H_n , $n = 2, , 10$.	
	$cond(H_n)$	

In all figures, we denote by S_n the n-th partial sum of the Fourier series of $\psi_m(x) := f(x) - P_{2m+1}(x)$ and by a_n and b_n the Fourier coefficients of $\psi_m(x)$. We have

$$
S_n(x) = \frac{a_0}{2} + \sum_{j=1}^n a_j \cos(jx) + b_j \sin(jx), \qquad n = 0, 1, ..., \tag{39}
$$

where

$$
a_j = \frac{1}{\pi} \int_{-\pi}^{\pi} \psi_m(x) \cos(jx) dx, \qquad b_j = \frac{1}{\pi} \int_{-\pi}^{\pi} \psi_m(x) \sin(jx) dx. \tag{40}
$$

Figure [1](#page-9-0) plots the functions $f - P_{2m+1}$ and $f - P_{2m+1} - S_{20}$ for $m = 2$. It can be seen from the plots that the maximal value of $f - P_{2m+1} - S_{20}$ is smaller than that of $f - P_{2m+1}$ by a factor 2×10^{-4} .

Figure 1: Plots of $f - P_{2m+1}$ and $f - P_{2m+1} - S_{20}$ for $m = 2$.

Figure [2](#page-10-3) plots the functions $f - P_{2m+1}$ and $f - P_{2m+1} - S_{20}$ for $m = 5$. It can be seen from Figure [2](#page-10-3) that the maximal value of $f - P_{2m+1} - S_{20}$ is smaller than that of $f - P_{2m+1}$ by a factor 2×10^{-8} . Thus, the accuracy "gain" by using $m = 5$ instead of $m = 2$ is a factor of 10^{-4} . This is a consequence of the fact that the coefficients of $f(x) - P_{2m+1}$ decrease at the rate not slower than $O(\frac{1}{n^{m+1}}).$

Figure [3](#page-10-4) plots the function $f - P_{2m+1} - S_{10}$ for $m = 2$ and $m = 5$. From Figure [1](#page-9-0) and Figure [3,](#page-10-4) we can see that there is no accuracy improvement by using S_{20} instead of S_{10} for approximating the function $f - P_5$. However, one can see from Figure [2](#page-10-3) and Figure [3](#page-10-4) that the accuracy gain by using S_{20} instead of S_{10} to approximate the function $f - P_{11}$ is a factor of 10^{-2} . Again, this is a consequence of the fact that the coefficients of $f(x) - P_{2m+1}$ decrease at the rate $O(\frac{1}{n^{m+1}})$.

Figure [4](#page-11-5) plots the functions $\log_{10}(n^{m+1}|a_n|)$ and $\log_{10}(n^{m+1}|b_n|)$ for $n =$ 1, 2, ..., 100, where a_n and b_n are the Fourier coefficients of the function $\phi_m(x)$ $f(x) - P_{2m+1}(x)$ (see [\(40\)](#page-8-1)). We have used $m = 2$ and $m = 5$ in the left and right figures, respectively. It follows from Figure [4](#page-11-5) that the Fourier coefficients a_n and b_n of $f(x) - P_{2m+1}(x)$ decreases at the rate not slower than $O(\frac{1}{n^{m+1}})$. This agrees with the result in Theorem [1.1.](#page-2-3)

ACKNOWLEDGEMENTS. The author is grateful to his student N.S.Hoang for obtaining the numerical results presented in this paper.

Figure 2: Plots of $f - P_{2m+1}$ and $f - P_{2m+1} - S_{20}$ for $m = 5$.

Figure 3: Plots of $f - P_{2m+1} - S_{10}$ for $m = 2$ and $m = 5$.

References

- [1] C. Brezinski, Extrapolation algorithms for filtering series of functions and treating Gibbs phenomenon, Numer. Algorithms, 36, N4, (2004), 309-329.
- [2] J. Boyd, Acceleration of algebraically converging Fourier series when the coefficients have series in powers of $\frac{1}{n}$ $\frac{1}{n}$, J.Comp. Phys., 228, N5, (2009), 1404-1411.
- [3] P. Davis and P. Rabinowitz, Methods of numerical integration, Academic Press, London, 1984.

Figure 4: Plots of Fourier coefficients of $e^x - P_{2m+1}$ for $m = 2$ and $m = 5$.

- [4] K. Eckhoff, Accurate reconstruction of functions of finite regularity from truncated Fourier series expansions, Math. of Comput., 64(210), (1995), 671-690.
- [5] A.Haar, Zur Theorie der orthogonalen Funktionsysteme, Math. Ann., 69, (1910), 331-371.
- [6] A. I. Katsevich, A. G. Ramm, Nonparametric estimation of the singularities of a signal from noisy measurements, Proc. Amer. Math. Soc., 120, N8, (1994), 1121-1134.
- [7] V.I.Krylov, L. G. Kruglikova, Handbook of numerical harmonic analysis, Israel Progr. for Sci. Transl., Jerusalem, 1969.
- [8] A. G. Ramm, Finding discontinuities of piecewise-smooth functions, JI-PAM (Journ of Inequalities in Pure and Appl. Math.) 7, N2, Article 55, pp. 1-7 (2006).
- [9] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, 2007.

Received: March, 2011