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Series that can be differentiated term-wise
m times if the function is m-smooth
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Abstract

Let f € C™(—m, ), where m > 0 is an integer. An algorithm is pro-
posed for representing f as a convergent series which admits m times
term-wise differentiation. This algorithm is illustrated by numerical ex-
amples. It can be used, for example, for acceleration of convergence
of Fourier series. The algorithm is generalized to the case when f is
piecewise-C™ (—m, 7) function with known positions of finitely many
jump discontinuities and the sizes of the jumps and to the case when
these positions and the sizes of the jumps are unknown. A jump dis-
continuity point s is a point at which at least one of the quantities
dj = fO(s—0)— fU)(s+0) # 0, where 0 < j < m.
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1 Introduction. Formulation of the results.

Suppose that f € C™(—m, ), where m > 0 is an integer. If one expands f into
2m-periodic Fourier series, then, in general, the extended 27-periodic function
has jump discontinuities at the points m and —7, and the corresponding Fourier
series of this function f

flo)y= > fae™ (1)

n=-—oo

has Fourier coefficients

fn = % /_7r f(z)e ™ dx (2)
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of the order O(n™!), and cannot be term-wise differentiated m > 0 times.
The goal in this paper is to find a series, representing f € C™(T') on the

interval T := [—m, 7] and such that it can be m times term-wise differentiated:
=3 epP(@),  0<ji<m. (3)

This statement of the problem apparently is new, but it has close relation with
classical problems, for example, with methods of acceleration of convergence of
Fourier series ([7]), with estimating a function from a truncated Fourier series
([, [2], [4]), with stable differentiation of piecewise-smooth functions and edge
detection ([8], [9], pp. 197-217).

Therefore the problem we have stated is of interest both theoretically and
in applications.

A related basic result in analysis is a theorem of A.Haar, which says that the
Fourier-Haar series converges uniformly for any continuous on [0, 1] function
f to this function ([5]).

Our goal can be achieved in many ways. Let us propose a simple way that
can be used numerically and is similar to one of the methods of acceleration
of the rate of decay of the Fourier coefficients ([7]).

Step 1.

Choose a polynomial Py,,11(x) of degree 2m + 1,

such that

fOr) = Ppla(m),  fOm) =Ppla(-n),  0<j<m. (5)

These conditions yield a linear algebraic system for the unknown 2m + 2 co-

efficients a,, 0 < k < 2m + 1. We prove in Lemma below that this linear

algebraic system has a solution and this solution is unique. Therefore the poly-

nomial Ps,+1(x) is uniquely determined by the above linear algebraic system.
Denote

g(x) := f(2) = Pomy1 (). (6)

Then ' ,
gV (=m) =gV (z)=0, 0<j<m. (7)

Therefore, the Fourier series of the function g(z) on the interval T' can be
m-times term-wise differentiated:

99 (@) = 3 galinye™,  0<j<m, (®)
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where
1 4 X
=5 _Wg(:v)e‘mdér- (9)
Step 2.
Therefore the series
f(@) = Pamia(2) + ) gne™ (10)

can be m times term-wise differentiated.
This is proved in Lemma [I.3] below.
Combining these results yields the following Theorem.

Theorem 1.1 If f € C™(T) and Pap+1(x) satisfies conditions (Bl), then
the series (IO can be m times term-wise differentiated.

The Fourier series, obtained after the m—th term-wise differentiation con-
verges, in general, in L*(T).

Lemma 1.2 Conditions (B) determine Py,,y1(x) uniquely.

Proof. Since conditions (&) constitute a linear algebraic system with the 2m+
2 unknowns ay, it is sufficient to prove that the corresponding homogeneous
system has only the trivial solution. The corresponding homogeneous system
says that polynomial Py,,11(x) of degree 2m + 1 has zeros at the points 7 and
—m of multiplicity m + 1 each, so it has 2m + 2 zeros counting multiplicities.
This implies that Py,,+1(z) = 0 identically. Consequently, a;, = 0 for 0 < k <
2m + 1. Lemma is proved. O

Lemma 1.3 If conditions ([0) hold, then relation (8) holds.

Proof. Integrating by parts m times the formula for g, and using the
conditions
gV(m) =gV (-m) =0, 0<j<m,
one gets
1 ™

In :27T(m)m -

Since g™ (z) € C(T), its Fourier coefficients are in /2. Consequently, relation
(8] holds. Lemma 1373 proved. O
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If the polynomial Py, 1(z) is found, then the series

f(x) = Py () + Z gne™ (11)

n=-—oo

can be m—times differentiated term-wise, so we have achieved the goal.

The conclusion of the Theorem is an immediate consequence of Lemmas
and

If one assumes that f is piecewise-smooth in 7', that is, there are finitely
many discontinuity points s, € (—m,7), 1 < p < P, the jumps values h;g,j) =
1fU) (s, — 0) — fU(s, +0)|, 0 < j < m, and the positions of the jumps are
known, that is, the numbers s, are known, then one may use a method similar
to the one that was described above. Namely, the function f is now not a
C™(T) function, but piecewise- C™(T") function. Suppose for simplicity that
there is only one discontinuity point s;. Then define a polynomial (), of
degree m from the conditions similar to (5):

FO(s1—0) = QY (s1) = fP(s1+0), 0<j<m. (12)

These conditions yield a linear algebraic system for the unknown m + 1 coef-
ficients g1, 0 < k < m, of the polynomial ), ;.

As in Lemma [I.2] one proves that the polynomial (),,1 of degree m is
uniquely determined by the conditions (I2)). The function fi(z) = f(x) —
Qma(x) in (—m,s], filr) = f(z) in [s,7), is C™(T') function, and to this
function one may apply Theorem [I.1l If there are several discontinuity points,
then one uses similar method and the number P of the polynomials (), is
equal to the number of discontinuity points.

Let us consider now a more difficult problem when the position of discon-
tinuity points s, is not known. For simplicity assume that there is just one
discontinuity point s € T.

The algorithm starts with finding the position of s. This can be done by us-
ing the method from [§], where the case of noisy measurements of the function
f was treated. In the simpler case when the values of f are given exactly, the
algorithm for locating the position of the jump s can be considerably simpli-
fied. One may use the following algorithm for locating the discontinuity point
with the jump h, defined above. Denote M := sup,cr .| f'(z)[. Choose an
integer NV such that M7 /N < h/8. Consider a partition of T by the points z;,
x; = —m+127r/N, 0 < i < N. Then on any interval (x;, z;41) which does not
contain s, one has d; := |f; — fiy1] < 2nM/N < h/4, while on the interval,
containing s, one has d; > 7h/8. Thus, calculating d; for 0 < i < N one finds
the interval of length 27 /N where the jump point s is located. Increasing N
one can find the position of s with any desired accuracy if f is known exactly,
that is noise-free. If f is known with some noise, then the algorithm from [§]
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can be applied for finding the position of the discontinuity point s. In this case
s cannot be located with an arbitrary desired accuracy.

Let us describe a method for representing a piecewise-C™(R) function f as
a series which can be term-wise differentiated m times. This method is more
general than the one described above, it does not requre finding the polynomial
P2m+1 (ZL’)

Let s be a jump discontinuity point of f, 1 <k < K,

dj o= [P (s —0) = fO(sp +0),  0<j<m,  q:= min |s; — s

1<k<K

(13)

Let h(x) =0 for z < 0,0 < h(x) <1, h(z) =1 for z € (0,0.5q), h(x) = 0 for
x >0.9q, h € C*(0,q), and

) = f@) + Q) Qx) =303 den = e g (1)

where
A := f (s, — 0) — f (s, + 0). (15)

Theorem 1.4 The function f; is C"™(R) if f is piecewise- C"™(R) function
with jump discontinuity points s, and the sizes of the jumps di,, 1 <k < K,
0<n<m.

Proof. By definition, the function f; € C™(A) if A does not contain
discontinuity points of f. Therefore to prove Lemma it is sufficient to

check that
Dse—0)=fP(s+0), 0<j<m, 1<k<K. (16)

Let us verify (I5]) for an arbitrary & < K and an arbitrary j < m.
We will use the following formula:

[2"1(2)]D]amro =0, j<norj>mn; [2"h(@)]"]smro = nl; ["h(2)]V]s—0 = 0.

(17)
Let us check this. By the Leibniz formula one has:
[@" ()] (z) = Ol a™) PRV (x). (18)
i=0

If j <nthenn—i>j—i, and (") = 22" AP (z) = 60D (z) + ny(2),
p > 0 is an integer, d(x) is the delta—functlon np(:v) € C°(R). One has
o6 (x) = 0if p > v > 0. Therefore( )(Zh(j Z(:E)—Olfj<n Ifj>n
then the summation in (I7) is up to i = n, because (z")® = 0 if i > n. If
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j = n, then in the sum in (I8) only the term with i = n does not vanish, and
this term is equal to n!. Thus, formula (I6) is verified.
From this formula the conclusion of Theorem [L.4] follows. Indeed,

Dok 4+0) = FD (s, 4+ 0) + diy = [P (s —0) = [P (s —0).  (19)
Theorem [1.4] is proved. a

The function h(x) can be constructed analytically.

2 Numerical results

2.1 Computing the coefficients of P,

Let
2m+1

Pomia(x) = Y ex',  om=0,1,2,..,. (20)
i=0
Let us find the coefficients of P, 1 from the following equations
k k
Pyl(m) =), POL(=m) = fP(=7),  k=0,..m. (21

From equations (20) and (2I)) one gets a linear algebraic system of 2m + 2

equations with 2m + 2 unknowns (¢;)275":

o (@)
Cam T M (x
G o = () = | T e
Z o (z)
where
zl p2n—2 |
(2n — 1)a?"2 (2n — 2)z*—3 e 0
M, (x) = (2n —1)(2n — 2)2?"3 (2n — 2)(2n — 3)a2n—* 0
(2n—1)(2n—é)---(n+1)z" (2n—2)(2n;3)...na;n—1 0

(23)
The condition number of the matrix

o= (i 7) .

increases very fast when n increases (see Table [Il). Thus, it is difficult to
compute ¢;, ¢ = 1,..,2m + 1, with high accuracy from equation (22) if m is
large.
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Let us propose an alternative way to compute (ci)?;”oﬂ.

One has

Py (z) = Zf(l —I-Zf(Z —m)L

=0

where L; and U; are polynomials of degree 2m + 1 satisfying

L (-m)=UP () =8y LY@ =U" (1) =0, ij=0,..

Let us find L; and U;. From the second equation in (26]), one gets
Li(z) = (= @)™ bz +7),  k=0,..m.
=0

This implies

Z&HZE—I—W @ —7r)m+1’ kE=0,..,m.

From equation (28]) one obtains

1d [ L
Ui = — d (ﬂ)m:_m k=0,..m.

il dat \ (z — m)mtl

This, the Leibniz rule, and (26]) imply

Cf Ji—k
lpi = Tdmik(u wm+1)|r——7r it ik
77/ -

0 if 1< k:
If ¢ > k then
Ck di=* 1
Ek,i = & 1 |m=—7r
il dat (x — m)m+
1 ik - 1

1 (1) (m+i— k)
TR — k) ml(2m)mrikL

Therefore,
D™ (m+4i —k)!

IIL ($+7T>Z, k:(),l,...,m

L (I) ( m%%ﬁ‘ 1 — ‘m‘ 27T>m+z k+1
k

(32)

143

(28)

(30)

(31)
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By a similar argument one obtains

Ur(x) = (@ + 7)™ upi(z—7)',  k=0,...m, (33)

=0

where

0 if i<k
(34)

um:{m(—l)i_k(m—l—1)(m—|—2)...(m—|—z'—/{:)W if 1>k

So

m - ka—l—'l—k‘)' i
U(x) = (z + ) szv i@ =™, k=01 .,m

(35)

2.2 Computing Fourier coefficients

In our experiments the coefficients of the Fourier series are computed by Filon’s
method, which yields an accurate results when one computes integral of oscil-
lating functions ([H]).

According to Filon’s method (see, e.g., [, p.151-153), one uses the follow-
ing formulas:

/ f(z) cos(kx)dx ~ h(a[f(b) sin(kb) — f(a)sin(ka)] + BCay, + ngn_l),

/ f(z)sin(kz)dr ~ h( — aff(b) cos(kb) — f(a)cos(ka)] + 5S2, + ’}/Sgn_l),

(36)
where
62 + 6 sinf cos§ — 2sin* 6
a=af) = B )
20\ _ 9 _
5= B(9) = 2[0(1 + cos 923 QSIHQCOSQ]’ 0. i, b b2na’ (37)

4(sinf — O cos b
3 =) = HIZ0s)
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and

Con = i f(aa;) cos(kaaj) + %[f(a) cos(ka) + f(b) cos(kb)],  x; =a+ jh,

Con-1 =Y f(wa;-1) cos(kwaj 1),

j=1

Sy, = i f(xa;) sin(kxay) + %[f(a) sin(ka) + f(b) sin(kb)],

j=1

Son—1 = Z f(zoj1) sin(kwg;1).

j=1

(38)

2.3 Numerical experiments

Numerical experiments are done with the function f(z) = €. In our exper-
iments, we use Filon’s method to compute the Fourier coefficients of f(x) —
Poyi1 ().

Table 1: Condition number of H,,, n = 2, ..., 10.
n cond(H,,)
59.5
992.2
23417.8
725022.5
28011136.4
1302272486.5
70885319047.2
4423628332689.4
311370017168572.4

= © 00 3 O O i W N

)

In all figures, we denote by S,, the n-th partial sum of the Fourier series of
Um(z) := f(x) — Pypy1(z) and by a, and b, the Fourier coefficients of ¢, (z).
We have

Sp(x) = %%—Zajcos(jxﬂ—bjsin(j:r), n=0,1,.., (39)

J=1

where

a; = %/_w U () cos(jx)dx, bj = %/_w Um(z)sin(jz)dz.  (40)
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Figure @ plots the functions f — Py,,.1 and f — P01 — Sog for m = 2. It
can be seen from the plots that the maximal value of f — Py, 11 — Sy is smaller
than that of f — P11 by a factor 2 x 1074,

x 10~ m=2
2m+1 b f= P ome™S20|]
0
_1 L
-2 0 2
X X

Figure 1: Plots of f — Po,, 1 and f — Papyq — Soo for m = 2.

Figure @ plots the functions f — Py,,11 and f — P01 — Sog for m = 5. It
can be seen from Figure @ that the maximal value of f — Ps,, 11 — S is smaller
than that of f — P41 by a factor 2 x 107%. Thus, the accuracy ”gain” by
using m = 5 instead of m = 2 is a factor of 107*. This is a consequence of the
fact that the coefficients of f(x) — Pay,41 decrease at the rate not slower than
O(e).

Figure B plots the function f — P11 — Sio for m = 2 and m = 5. From
Figure [l and Figure B, we can see that there is no accuracy improvement by
using Sy instead of Spg for approximating the function f — Ps. However, one
can see from Figure @ and Figure H that the accuracy gain by using So( instead
of Sip to approximate the function f — Py is a factor of 1072, Again, this is
a consequence of the fact that the coefficients of f(z) — Py,,41 decrease at the
rate O(=rr).

Figure @ plots the functions log;y(n™|a,|) and log;,(n™b,|) for n =
1,2, ...,100, where a,, and b,, are the Fourier coefficients of the function ¢,,(z) =
f(z) — Pams1(z) (see (E)). We have used m = 2 and m = 5 in the left and
right figures, respectively. It follows from Figure @l that the Fourier coefficients
an and by, of f(x) — Paps1(z) decreases at the rate not slower than O(—).
This agrees with the result in Theorem X1

ACKNOWLEDGEMENTS. The author is grateful to his student N.S.Hoang
for obtaining the numerical results presented in this paper.
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-11

3 f- P2m+1 1

f-p

2m+1 20

x10™* m=2 x 10°° m=5
f=Pom ™ S10 F=Pome1S10
5 5
0 0
5 -5
-2 0 2 -2 0 2
X X

Figure 3: Plots of f — Ps,, 1 — S1o for m =2 and m = 5.
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