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Abstract
In this paper, the reciprocal theorem method is used to obtain the theoretical
solutions for a rectangular plate supported on the elastic foundation with free
edges, which have widespread applications in the designs of civil engineering
such as highway and airport pavement. Numerical examples are presented at the
end to compare the results obtained by this method and those from conventional
methods
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1 Introduction

The theoretical analysis of highway and airport pavement is traditionally
performed based on the Wassgarde methods [1]. However, this method considers
the highway and airport pavement as an infinite plate supported on a Winkler
foundation—an assumption that is not applicable in real practice because the
model cannot determine the stresses when load is applied on the edges and at the
corners of the plate. In practice, those stresses are of crucial importance to the
design of  highway and airport pavement [2]. The superimposition method has
therefore been used to overcome the abovementioned problem [3]. Another
method that is commonly used to calculate the response of concrete pavement is
the finite element method [4]. In this paper, a difference approach using the
reciprocal theorem is used to obtain the theoretical solutions for the rectangular
plate supported on an elastic foundation with free edges. Initially, a basic solution
is established for the simply supported plate along all edges and acted on by a unit
concentrated force. Subsequently, by using the reciprocal theorem between the
simply supported plate and the completely free plate, a theoretical solution for the
latter plate is obtained. Finally, numerical results are presented for easy
comparison with those reported in the relevant references.

2 Application of reciprocal theorem method and bending solutions
for a rectangular plate

The simply supported rectangular plate on the Winkler foundation is subjected to
a concentrated force of unit amplitude, as shown in Figure 1. The force is
permitted to move on the surface of the plate freely. Its co-ordinates (ζ,η)  are
variable. The equation governing the equilibrium of the plate under the force can
be written as:
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where D=Eh3/12(1-v2) and h is the thickness of the plate, E is the Young’s
modulus of the plate material, is the Poisson ratio, K is the parameter of
foundation reaction force and δ(x-ζ,y-η) is the Dirac Delta function.
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Figure 1. simply supported rectangular plate subjected to a concentrated unit amplitude force

Supposing that the plate in Fig.1 has a Navier’s solution
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Where km=mπ/a;  kn=nπ/b
The Dirac delta functionδ(x-ζ,y-η)  in equation (1) can then be represented
by a Fourier double sine series as follows:
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Substituting equation (2) and (3) into (1), the following expression can be
obtained
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where 2 2( )mn m nK k k K  
Now, for the rectangular plate supported on Winkler foundation with free edges,
as shown in Figure 2, its boundary displacements can be represented as follows:
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where D1,D2,D3 and D4 are the displacements at the corners (0,0), (a,0), (0,b) and
(a,b), respectively.
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Figure 2. A rectangular plate with free edges on Winkler foundation

For a better understanding of the use of the reciprocal theorem in obtaining a
solution for a rectangular plate with free edges on Winkler foundation, it is easier
to use a beam instant of rectangular plate as an example to demonstrate how the
reciprocal theorem works. As shown in Figure 3, a simply supported beam is
subjected to a concentrated force p1 at coordinate x=ξ.The displacement along
the direction of this force is indicated by △1.Another simply supported beam is
shown in Figure 4, with a concentrated force p2 , the corresponding displacement
is △2.

Figure 3 simply supported beam subjected to a concentrated force p1
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Figure 4 Simply supported beam subjected to a concentrated force p2

With reference to the reciprocal theorem, Figure 4 demonstrates that the work
done by the force p1 moving along the displacement △2 is equal to the work
performed by the force p2  moving along the displacement △ 1 . This
relationship is expressed mathematically as follows:

1 2 2 1P P                                       (9)
Let p1 be unity then equation (9) becomes

2 2 1P                                                 (10)
equation (10) shows that the displacement △ 2 can be expressed by the
multiplication of the force p2 and the displacement △1. Because the force p1 is
permitted to move along the beam, the displacement △1 is the function of the
coordinateξ. Therefore, the displacement △2 in equation (9) is a function of
the same coordinateξand in fact represents the flexural displacement of the beam
in Figure 4.
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are the distributed vertical edge reactions along the edges perpendicular to the x
axis and y axis as shown in Figure 1 and
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is the concentrated force acting at the corner of the plate.
As shown in equation (11), the displacement w(ξ,η) is expressed as a function
of the coordinates (ξ,η). It can be also expressed as a function of coordinates (x ,
y) by replacingξandηin equation (11) with x and y after the integration is
completed- it does not matter which coordinate is used because either of them
gives the same displacement function.
Substituting equations (5) through (8) into equation (11) and completing
integration, a Navier’s type solution for the plate of Figure 2 is obtained. This
solution has to be transformed into Levy’s type using the method mentioned in
reference [7]. As a result, the following equation is obtained.
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2 2
n ni k    ( 1i   ), respectively, and by making use of the identities

sinh sinix i x and cosh cosix x .
In order to determine the unknown coefficients 1 2 1; ; ;m m nB B A 2 ;nA 1;D 2;D

3D and 4D in equation (12), it is made to satisfy the following boundary
conditions:
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Equations (16)-(23) indicate that the distributed vertical edge reactions along four
edges of the plate in Figure 2 are zero and equations (20)-(23) show that the
vertical concentrated force acting at the four corners of the plate are zero. It is
easy to prove that the boundary conditions can be satisfied automatically,
provided that bending moments distributed along the plate edges are zero,
Substituting equation (15) into (16)-(23), eight homogeneous algebraic equations
relating the unknown displacement coefficients 1 2; ;m mB B 1 ;nA 2 ;nA 1;D 2;D and

4D can be obtained as follows.
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If N terms are taken for each of  B1m, B2m, A1n and A2n in equation (24), a set of
4N+4 homogenous algebraic equations can be established after enforcing the
other seven boundary conditions, (16)-(23). From algebra theory, it is easy to
solve these algebraic equations to determine the unknown quantities B1m, B2m,
A1n , A2n , D1, D2, D3 and D4
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3 The computed results and comparison

To test the validity of the aforementioned method, we take the thin plate as shown
in Fig.1 as an example. The parameters are taken from reference [1]
a=b=1m,c=0.5m, h=0.18m, E=300MN/m2 ,k=50MN/m2, =0.35,q=1N/m2.The
calculated results are listed in table 1.

Table 1 the deflections and stresses of thin plate

Location
  m

      Deflection (10-8 m)          Stress  (N/m2)

 x  y [1] [2] [3] [4] [5] [1]  [2]  [3]  [4] [ 5]
0.5 0.5 0.561 0.581 0.576 0.591 0.585 0.842 0.821 0.928 0.823 0.843
0.5 0.4 0.556 0.574 0.568 0.583 0.577 0.778 0.753 0.866 0.752 0.780
0.5 0.3 0.541 0.550 0.546 0.559 0.555 0.582 0.553 0.668 0.576 0.581
0.5 0.2 0.520 0.528 0.530 0.523 0.521 0.253 0.267 0.352 0.253 0.267
0.5 0.1 0.500 0.501 0.501 0.494 0.494 0.062 0.027 0.154 0.061 0.067
0.5 0.0 0.484 0.477 0.483 0.473 0.478 0.009 0.000 0.091 0.000 0.000

In table 1, [1] ,[2],[3],[4] and[5] represent the results from references [1];[ 2];
[3];[4] and that in the papers respectively. The data in table 1 show that the
calculated results tally with those obtained by other methods.
In the above analytical procedure, the governing differential equation is satisfied
throughout, and the boundary conditions can be met to any degree of accuracy by
taking more terms in equation (24). However, after conducting convergence tests,
it is shown that only 35 terms (e.g. K=35) need to be taken in order to provide an
accuracy of up to four significant digits in the displacement of the plate
investigated

4 Conclusions

The reciprocal theorem method used for obtaining analytical type solutions of
rectangular plates supported on a foundation with free edges has been introduced
and described. For illustrative purposes it has been utilized to calculate the
response of a plate on a foundation with four free edges. Only simple definite
integration is needed to obtain a solution for this problem and the governing
differential equation can be satisfied throughout the domain of the plate.
Boundary conditions are satisfied to any desired degree of accuracy. It is a known
shortcoming of solution of the conventional Rayleigh- Ritz method that it is not
possible to select shape functions which exactly satisfy the free edge conditions.
The problem is completely eliminated here, since, as is the case with the
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superposition method, no function needs to be chosen. The mathematical
technique described here is applicable to other complicated problems, such as
point-supported plates and plates supported with elastic edges.
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