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Abstract

Some notion of closeness of systems in Banach spaces that leave

the basicity properties of the considered systems are introduced. The

obtained results generalize many results known earlier
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1 Introduction

The theorems on basicity of close in this or another sense systems in Banach
spaces play a special role for establishing basicity. Apparently, this method
originates in the paper of Paley-Wiener [10] on a Riesz basicity of a perturbed
system of exponents. In the sequel in this direction considerable results were
obtained and different generalizations of the Paley-Wiener theorem were sug-
gested. One can find these or other informations in the review paper [7] and in
the monographs [8;9;11]. One variant of closeness of systems in Hilbert space
L2 of functions retaining the basicity property was suggested in [6].

The present paper is devoted to the problems mentioned above. New vari-
ants of closeness of systems in Banach spaces retaining the basicity property
are suggested. In particular, all the results of the paper [6] are obtained from
them. It should be noted that the results of the papers [2-5;12] are closely
border with the considered questions.
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2 Some general facts and a degenerate sys-

tems

We’ll need some facts from the theory of bases in Banach spaces. By L(X ; Y )
we denote a Banach space of bounded operators acting from X to Y . Accept
L(X) ≡ L(X ;X). Recall that the system {yn}n∈N is said to be ω-linear
independent in Y , if

∑

∞

n=1
anyn = 0 is possible only for an = 0, ∀n ∈ N . Let

{xn}n∈N be a basis in X . If T ∈ L(X ; Y ) is invertible, then {Txn}n∈N also
makes a basis in Y with the same space of coefficients of {xn}n∈N .

Now, let F ∈ L(X ; Y ) be a Fredholm operator, {xn}n∈N ⊂ X be a complete
and minimal system in X and yn = Fxn, ∀n ∈ N . If F is invertible, then it
is clear that {yn}n∈N is also complete and minimal in Y. It is easy to see that
if F is invertible, then {yn}n∈N is ω-linear independent. Conversely, assume
that {yn}n∈N is complete in Y . Take ϕ∗ ∈ KerF ∗ and consider:

0 = (F ∗ϕ∗)xn = ϕ∗(Fxn) = ϕ∗(yn), ∀n ∈ N.

From the completeness of {yn}n∈N we get that ϕ∗ = 0, i.e. KerF ∗ = {0}.
Consequently, F is invertible and so {yn}n∈N is also minimal and ω-linear
independent in Y .

We’ll use these reasonings in the sequel.

3 Closed systems

Let X be some Banach space and T ∈ L (X) be a completely continuous
operator.

Consider Φλ = I + λT, where λ ∈ C is a complex parameter. It is known
that Φλ is a Fredholm operator. If λ is a regular value of T , then Φλ is
invertible, and consequently it takes any basis {xn}n∈N ⊂ X to the basis
{Φλxn}n∈N . But if λ is an eigen value of T , then the system {Φλxn}n∈N is
simultaneously non complete and non minimal inX , and it has finite deficiency.
The set of such values {λk}k∈N is discrete and lim

k→∞

|λk| = ∞.

Assume that Sx ≡ {xn}n∈N ⊂ X is a basis in a Banach space X and
S∗

x̄ ≡ {x∗

n}n∈N ⊂ X∗ is adjoint system, where X∗ is a space adjoint to X.

Consider the operator Φ : X → X :

Φx =
∞
∑

n=1

x∗

n(x)yn, (1)

where Sȳ ≡ {yn}n∈N ⊂ X is some system. It is obvious that the domain of
definition DΦ of the operator Φ consists of those x ∈ X , for which the series
(1) converges in X . Clearly, Φ = I + T , where



ON THE CLOSED SYSTEMS 259

Tx =
∞
∑

n=1

x∗

n(x)(yn − xn), ∀x ∈ DΦ. (2)

Introduce the following

Definition 3.1 A system Sȳ is said to be S∗

x̄ -close to the system Sx̄, if the
series (2) converges for ∀x ∈ X, i.e. DT = X. Therewith, if the operator T ,
defined by the expression (2), is completely continuous, this closeness is said
to be σS∗

x̄-closeness.

It is easy to see that if for ∀x ∈ X :

{x∗

n(x)}n∈N ∈ lp and {‖yn − xn‖}n∈N ∈ lq,

where 1

p
+ 1

q
= 1, 1 ≤ p ≤ +∞, then the systems Sȳ and Sx̄ are σS∗

x̄-close.

So, if the system Sȳ is σS∗

x̄-close to the minimal system Sx̄, then Φ is a
Fredholm operator. In this case the following statement holds.

Statement 3.2 Let Sx̄ form a basis in X and Sȳ be σS∗

x̄-close to it. Then
the following statements are equivalent:

1) Sȳ is complete in X; 2) Sȳ is minimal in X; 3) Sȳ is ω-linearly inde-
pendent in X; 4) Sȳ forms a basis in X, isomorphic to the basis Sx̄; 5) The
operator Φ = I + T is invertible in L(X).

The validity of this statement follows directly from the above-mentioned
reasonings and relations. Now, let λ ∈ ρ(T ) be a regular value of the operator
T . Thus, in this case, the Fredholm operator Φλ = I + λT is invertible.We
have Φλxn = xn+λ(yn−xn) = (1−λ)xn+λyn, ∀n ∈ N. But if 0 6= λ ∈ σ(T ) is
an eigen value of the operator T , then the system Sλ

ȳ ≡ {xn + λ(yn − xn)}n∈N
is not simultaneously non complete and non minimal (it is not ω-linearly in-
dependent) in X .

It is clear that, on the contrary, if Sλ
ȳ is complete (is minimal or ω-linearly

independent) then Φλ is invertible. Thus, the following statement is valid.

Theorem 3.3 Let Sx̄ form a basis in X and the system Sȳ be σS∗

x̄-close to
it. Then the following statements are equivalent:

1) Sλ
ȳ is complete in X; 2) Sλ

ȳ is minimal in X; 3) Sλ
ȳ is ω-linearly in-

dependent in X; 4) Sλ
ȳ forms a basis in X, isomorphic to the basis Sx̄; 5)λ

belongs to the resolvent set T .
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4 Lp case. Close bases

Further we’ll consider the most specific case, namely, the case when X =
Lp, 1 ≤ p < +∞. Then X∗ = Lq,

1

p
+ 1

q
= 1, and an arbitrary continuous

functional lg on X is realized by the function g ∈ Lq and has the expression
lg(f) =

∫ b
a f(t)g(t)dt, ∀f ∈ Lp. So, let {xn}n∈N ⊂ Lp be a basis in Lp and

{x∗

n}n∈N ⊂ Lq be an appropriate adjoint system. Take ∀f ∈ Lp and consider
the operator

Tf =
∞
∑

n=1

lx∗

n

(f) zn, (3)

where {zn}n∈N ⊂ Lp is some system. If expression (3) generates a completely
continuous operator in Lp, then from Statement 3.2 we directly get the follow-
ing theorem.

Theorem 4.1 Let {xn}n∈N be a basis in Lp, operator (3) be completely
continuous in Lp and fλ

n = xn + λzn, ∀n ∈ N . Then the following statements

are equivalent
(

Φλ ≡
{

fλ
n

}

n∈N

)

:

1) Φλ is complete in Lp; 2) Φλ is minimal in Lp; 3) Φλ is ω-linearly inde-
pendent; 4) Φλ forms a basis in Lp; 5) λ ∈ ρ(T ).

Further, we have:

Tf =
∞
∑

n=1

∫ b

a
f(t)x∗

n(t)dtzn(x) =
∫ b

a
K(x, t)f(t)dt, (4)

where

K(x, t) =
∞
∑

n=1

x∗

n(t)zn(x). (5)

Thus, if integral operator (4) with the kernel K(x, t) generates a completely
continuous operator in Lp, then Theorem 3.3 is valid with respect to the system
Φλ. In particular, for p = 2, if K(x, t) ∈ L2 ([a, b]× [a, b]), then we obtain a
strong version of the result of the [6]. Considering the expression

∫ b

a

∫ b

a
|K(x, t)|2 dxdt =

∑

n,k

∫ b

a
x∗

n(t)x
∗

k(t)dt
∫ b

a
zn(x)zk(x)dx,

we get that if the series
∑

n,k ankbnk converges, where ank =
∫ b
a x

∗

n(t)x
∗

k(t)dt,

bnk =
∫ b
a zn(x)zk(x)dx, then it generates a completely continuous operator in

Lp.
Using different sufficient conditions on complete continuity of an integral

operator in Lp, we get appropriate conditions on the kernel K(x, t).
Considering this from Theorem 4.1 we directly obtain



ON THE CLOSED SYSTEMS 261

Corollary 4.2 Let {xn(t)}n∈N form a basis in Lp with an adjoint system
{x∗

n}n∈N ⊂ Lq,
1

p
+ 1

q
= 1, 1 ≤ p < +∞. If the series

∑

∞

n=1
‖x∗

n‖q ‖zn‖p < +∞

converges, then for the system {xn + λzn}n∈N Theorem 4.1 is valid, where ‖·‖p
is an ordinary norm in Lp:

‖f‖p =

(

∫ b

a
|f(t)|p dt

)1/p

.

Indeed, in this case, kernel (5) provides complete continuity of operator (4) in
Lp (see f.i. [1], p.557).

A similar statement holds if
∑

∞

n=1
sup
x

|zn(x)| ‖x
∗

n‖q < +∞ is fulfilled.

Corollary 4.3 Let {xn}n∈N be a basis in Lp and
∑

n ‖x
∗

n‖r ‖zn‖r < +∞ be
fulfilled, where r = min {p; q}. Then Theorem 4.1 is valid with respect to the
system {xn + λzn}n∈N .

Corollary 4.4 Let {xn}n∈N be a bases in Lp, 1 ≤ p < +∞, and there hold

the conditions:
(

1

p
+ 1

q
= 1

)

∃r, σ > 0 : 1− σ
p
< r

q
, such that

∑

n

sup
t

|x∗

n(t)| ‖zn‖r < +∞;
∑

n

sup
x

|zn(x)| ‖x
∗

n‖σ < +∞.

Then Theorem 4.1 is valid for the system {xn + λzn}n∈N .

Validity of Corollaries 4.3 and 4.4 follows from Theorem 4.1 and the results
of the monograph [1, p.292].

5 Example

Let X = L2 (0, π) , xn (t) = sinnt, n ∈ N . As the system {zn}n∈N we take
zn (t) = sinλnt − sinnt, n ∈ N , where {λn} ⊂ R- some sequence of real
numbers. The biorthogonal system to {xn}n∈N is { 2

π
sin nt}n∈N . Following the

formula (5) we have

K (x; t) =
2

π

∞
∑

n=1

zn(x) sinnt.

Hence
∫ π

0

∫ π

0

|K(x; t)|2dtdx = c1

∞
∑

n=1

∫ π

0

|zn(x)|
2dx ≤ c2

∞
∑

n=1

|λn − n|2,

where ck = 1, 2- some constants. Having paid attention to Theorem 4.1 we
obtain
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Statement 5.1 Let
∑

∞

n=1
|λn − n|2 < ∞. Then conserning system yλn =

(1− λ) sinnt+ +λ sinλnt, n ∈ N , the following statements are equivalent:
1) {yλn}n∈N is complete in L2(0; π); 2){yλn}n∈N is minimal in L2(0; π);

3){yλn}n∈N is ω− linearly independent; 4){yλn}n∈N forms a Riesz basis in L2(0; π);
5)λ ∈ ρ(τ), where operator T defined by formula (4).

Similar results can be received in Lp.
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