Mathematica Aeterna, Vol. 2, 2012, no. 4, 297 - 308

Doubly Fuzzy Preordered Sets

Yong Chan Kim and Young Sun Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Department of Applied Mathematics, Pai Chai University, Dae Jeon, 302-735, Korea yskim@pcu.ac.kr

Abstract

We investigate the properties of doubly fuzzy preordered sets. We show that the family of l-stable fuzzy sets is a bounded lattice. We investigate the relation between the bounded lattice X and (resp. maximal) fuzzy filter-ideal pairs on X.

Mathematics Subject Classification: 03E72, 54A40,54B10

Keywords: *l*-stable and *r*-stable sets, doubly fuzzy preordered sets, bounded lattices, fuzzy filters, fuzzy ideals

1 Introduction

A fuzzy context consists of (X, Y, R) where X is a set of objects, Y is a set of attributes and R is a relation between X and Y. Bělohlávek [2-4] developed the notion of lattice structures with $R \in L^{X \times Y}$ on a complete residuated lattice L. Lattice structures are important mathematical tools for data analysis and knowledge processing [2-4,10]. On the other hand, Urquhart [12] showed that the dual space of a bounded lattice is a doubly ordered topological space. This viewpoint develops many representation theorems for various algebraic structures [1,5,6].

In this paper, we investigate the properties of doubly fuzzy preordered sets. Using their properties, we define l-stable and r-stable fuzzy sets. We show that the family of l-stable fuzzy sets is a bounded lattice. We investigate the relation between the bounded lattice X and (resp. maximal) fuzzy filter-ideal pairs on X.

2 Preliminaries

Definition 2.1 [8,9,11] A triple (L, \leq, \odot) is called a *complete residuated lattice* iff it satisfies the following properties:

(L1) $(L, \leq, 1, 0)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;

(L2) $(L, \odot, 1)$ is a commutative monoid;

(L3) \odot is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Example 2.2 [8,9,11] (1) Each frame (L, \leq, \wedge) is a complete residuated lattice.

(2) The unit interval with a left-continuous t-norm t, $([0, 1], \leq, t)$, is a complete residuated lattice.

(3) Define a binary operation \odot on [0,1] by $x \odot y = \max\{0, x + y - 1\}$. Then $([0,1], \leq, \odot)$ is a complete residuated lattice.

Let (L, \leq, \odot) be a complete residuated lattice. A order reversing map $*: L \to L$ defined by $a^* = a \to 0$ is called a *strong negation* if $(a^*)^* = a$ for each $a \in L$.

In this paper, we assume $(L, \leq, \odot, *)$ is a complete residuated lattice with a strong negation *.

Definition 2.3 [8,9,11] Let X be a set. A function $e_X : X \times X \to L$ is called *fuzzy preorder* on X if it satisfies the following conditions:

(E1) $e_X(x,x) = 1$ for all $x \in X$,

(E2) $e_X(x,y) \odot e_X(y,z) \le e_X(x,z)$, for all $x, y, z \in X$,

The pair (X, e_X) is a fuzzy preorder set.

Let e_X^1, e_X^2 be fuzzy preorder on X. A structure (X, e_X^1, e_X^2) is called a doubly fuzzy preordered set. If for all $x, y \in X$, $e_X^1(x, y) = e_X^2(x, y) = 1$ implies x = y, (X, e_X^1, e_X^2) is called a doubly fuzzy ordered set.

Lemma 2.4 [8,9,11] For each $x, y, z, x_i, y_i \in L$, we define $x \to y = \bigvee \{z \in L \mid x \odot z \leq y\}$. Then the following properties hold.

(1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$ and $x \to y \leq x \to z$ and $z \to x \leq y \to x$.

(2) $x \odot y \le x \land y$ and $x \odot (x \to y) \le y$.

(3)
$$x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$$

- (4) $(\bigvee_{i\in\Gamma} x_i) \to y = \bigwedge_{i\in\Gamma} (x_i \to y).$
- (5) $x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i).$
- (6) $(\bigwedge_{i\in\Gamma} x_i) \to y \ge \bigvee_{i\in\Gamma} (x_i \to y).$
- (7) $\bigwedge_{i\in\Gamma} y_i^* = (\bigvee_{i\in\Gamma} y_i)^*$ and $\bigvee_{i\in\Gamma} y_i^* = (\bigwedge_{i\in\Gamma} y_i)^*$.
- (8) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$

(9) $1 \rightarrow x = x$. (10) $x \leq y$ iff $x \to y = 1$. (11) $(x \to y) \odot (y \to z) \le x \to z$. $(12) (x_1 \to y_1) \odot (x_2 \to y_2) \le (x_1 \odot x_2 \to y_1 \odot y_2).$

Example 2.5 (1) We define a map $e_L : L \times L \to L \ e_L(x,y) = x \to y =$ $\bigvee \{z \in L \mid x \odot z \leq y\}$ and $e_L^{-1}(x, y) = e_L(y, x)$. Then (L, e_L, e_L^{-1}) is a doubly fuzzy ordered set from Lemma 2.4 (10-11).

(2) We define a function $e_{L^X}: L^X \times L^X \to L$ as $e_{L^X}(f,g) = \bigwedge_{x \in X} (f(x) \to f(x))$ g(x)). Then (L^X, e_{L^X}) is a fuzzy preordered set.

(3) If (X, e_X) is a fuzzy preordered set and we define a function $e_X^{-1}(x, y) =$ $e_X(y, x)$, then (X, e_X^{-1}) is a fuzzy preordered set.

Doubly Fuzzy Preordered Sets 3

Definition 3.1 Let e_X^1, e_X^2 be fuzzy preorder on X.

(1) $A \in L^X$ is e_X^1 -extensional iff $A(x) \odot e_X^1(x, y) \leq A(y)$. (2) $B \in L^X$ is e_X^2 -extensional iff $B(x) \odot e_X^2(x, y) \leq B(y)$. The family of e_X^1 -extensional (resp. e_X^2 -extensional) fuzzy sets is denoted by $E_1(L^X)$ (resp. $E_2(L^X)$).

Definition 3.2 Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. We define maps $l, r: L^X \to L^X$ as, for $A^*(y) = (A(y))^*$,

$$l(A)(x) = \bigwedge_{y \in X} (e_X^1(x, y) \to A^*(y)),$$
$$r(A)(x) = \bigwedge_{y \in X} (e_X^2(x, y) \to A^*(y)).$$

A fuzzy set $A \in L^X$ is called *l*-stable (resp. *l*-stable) iff lr(A) = A (resp. rl(A) = A.

The family of all *l*-stable (resp. r-stable) fuzzy sets will be denoted by $L(L^X)$ (resp. $R(L^X)$).

Theorem 3.3 Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. We have the following properties.

(1) $l(A) \in E_1(L^X)$ and $l(A) \leq A^*$. (2) $r(A) \in E_2(L^X)$ and $r(A) \leq A^*$. (3) If $A \in E_1(L^X)$, then $A \leq lr(A)$. (4) If $A \in E_2(L^X)$, then $A \leq rl(A)$. (5) If A is $(e_X^2)^{-1}$ -extensional, then $lr(A) = l(A^*) \le A$. (6) If A is $(e_X^1)^{-1}$ -extensional, then $rl(A) = r(A^*) \le A$. (7) If $A \in E_1(L^X)$, then $r(A) \in R(L^X)$. (8) If $A \in E_2(L^X)$, then $l(A) \in L(L^X)$. (9) If $A \in L(L^X)$, then $r(A) \in R(L^X)$. (10) If $A \in R(L^X)$, then $l(A) \in L(L^X)$. (11) If $A, B \in L(L^X)$, then $r(A) \land r(B) \in R(L^X)$.

Proof. (1) By Lemma 2.4(2), we have

$$\begin{split} l(A)(x) &\odot e_X^1(x,y) \odot e_X^1(y,z) \le l(A)(x) \odot e_X^1(x,z) \\ &= \bigwedge_{y \in X} (e_X^1(x,y) \to A^*(y)) \odot e_X^1(x,z) \\ &\le (e_X^1(x,z) \to A^*(z)) \odot e_X^1(x,z) \le A^*(z). \end{split}$$

Thus, $l(A)(x) \odot e_X^1(x,y) \le \bigwedge_{y \in X} (e_X^1(y,z) \to A^*(z)) = l(A)(y)$. Furthermore, $l(A)(x) \le e_X^1(x,x) \to A^*(x) = A^*(x)$.

(3) Since A is e_X^1 -extensional, $A(y) \odot e_X^1(y, w) \le A(w)$ and $A(y) \le e_X^1(y, w) \to A(w)$. Thus,

$$\begin{split} l(r(A))(x) &= \bigwedge_{y \in X} (e_X^1(x, y) \to r(A)^*(y)) \\ &= \bigwedge_{y \in X} (e_X^1(x, y) \to (\bigwedge_{w \in X} (e_X^2(y, w) \to A^*(w)))^*) \\ &= \bigwedge_{y \in X} (e_X^1(x, y) \to \bigvee_{w \in X} (e_X^2(y, w) \odot A(w))) \\ &\geq \bigwedge_{y \in X} (e_X^1(x, y) \to \bigvee_{w \in X} (e_X^2(y, w) \odot A(x) \odot e_X^1(x, w))) \\ &\geq \bigwedge_{y \in X} (e_X^1(x, y) \to (e_X^2(y, y) \odot A(x) \odot e_X^1(x, y))) \\ &\geq A(x). \end{split}$$

(5) Since $r(A) \leq A^*$, then $lr(A) \geq l(A^*)$. Moreover, we have:

$$\begin{split} l(r(A))(x) &= \bigwedge_{y \in X} (e_X^1(x, y) \to r(A)^*(y)) \\ &= \bigwedge_{y \in X} (e_X^1(x, y) \to (\bigwedge_{w \in X} (e_X^2(y, w) \to A^*(w)))^*) \\ &= \bigwedge_{y \in X} (e_X^1(x, y) \to \bigvee_{w \in X} (e_X^2(y, w) \odot A(w))) \\ &\quad (e_X^2(y, w) \odot A(w) \le A(y)) \\ &\leq \bigwedge_{y \in X} (e_X^1(x, y) \to A(y)) = l(A^*)(x) \le A(x). \end{split}$$

(7) Let A be e_X^1 -extensional. Then $A \leq lr(A)$. Thus $r(A) \geq rlr(A)$. Since r(A) be e_X^2 -extensional, by (4), $r(A) \leq rlr(A)$.

(11) We have $rl(r(A) \wedge r(B)) \leq rlr(A) \wedge rlr(B) = r(A) \wedge r(B)$. Moreover, since $r(A), r(B) \in E_2(L^X)$, then $r(A) \wedge r(B) \in E_2(L^X)$. Hence $r(A) \wedge r(B) \leq rl(r(A) \wedge r(B))$.

Other cases are similarly proved.

Theorem 3.4 Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. Define $r : E_1(L^X) \to E_2(L^X)$ and $l : E_2(L^X) \to E_1(L^X)$. Then r and l form a Galois connection; i.e. $B \le r(A)$ iff $A \le l(B)$.

Proof. Let $B \leq r(A)$. Then $l(B) \geq lr(A) \geq A$ because $A \in E_1(L^X)$. Let $B \leq l(A)$. Then $r(A) \geq rl(B) \geq B$ because $B \in E_2(L^X)$.

Theorem 3.5 Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. We define

$$A \sqcap B = A \land B, \ A \sqcup B = l(r(A) \land r(B)), \ A, B \in L(L^X).$$

Then $(L(L^X), \Box, \sqcup, \overline{0}, \overline{1})$ is a lattice.

Proof. If $A \leq B$, then $r(A) \geq r(B)$ and $lr(A) \leq lr(B)$. Thus $lr(A \wedge B) \leq lr(A) \wedge lr(B) = A \wedge B$.

Since A = lr(A) and B = lr(B), by Theorem 3.3(1), A and B are e_X^1 -extensional. Thus $A \wedge B$ is e_X^1 -extensional because

$$(A \land B)(x) \odot e_X^1(x,y) \le (A(x) \odot e_X^1(x,y)) \land (B(x) \odot e_X^1(x,y)) \le (A \land B)(y)$$

Thus $lr(A \wedge B) = A \wedge B$; i.e. $A \sqcap B \in L(L^X)$.

Since $l(r(A) \wedge r(B))$ is e_X^1 -extensional from Theorem 3.3(1), we have $l(r(A) \wedge r(B)) \leq lrl(r(A) \wedge r(B))$.

Since r(A) and r(B) are e_X^2 -extensional from Theorem 3.3(2), $r(A) \wedge r(B)$ are e_X^2 -extensional. From Theorem 3.3(2), $r(A) \wedge r(B) \leq rl(r(A) \wedge r(B))$. Thus, $l(r(A) \wedge r(B)) \geq lrl(r(A) \wedge r(B))$. Therefore, $l(r(A) \wedge r(B)) \in L(L^X)$. Let $A \leq C$ and $B \leq C$ for $A, B, C \in L(L^X)$. Then $r(A) \geq C$ and $r(B) \geq C$. Hence $r(A) \wedge r(B) \geq r(C)$. Thus, $l(r(A) \wedge r(B)) \leq l(r(C)) = C$. So, $A \sqcup B$ is the least upper bound.

Example 3.6 Let $X = \{a, b, c\}$ be a set, $(L = [0, 1], \odot)$ with $x \odot y = \max\{0, x + y - 1\}$ and $e_1, e_2 : X \times X \to [0, 1]$ as follows:

e_1	a	b	с	e_2	a	b	с
a	1	0.8	1	a	1	0.9	0.5
b	0.3	1	0.5	b	1	1	0.7
с	0.7	0.6	1	с	0.8	0.7	1

We denote A = (A(a), A(b), A(c)).

(1) Since $e_1(x, y) = e_2(x, y) = 1$ implies x = y, then (X, e_1, e_2) is a doubly fuzzy ordered set.

(2) A = (0.5, 0.7, 0.6) is e_1 -extensional but not e_2 -extensional because

$$0.7 = A(b) \odot e_2(b, a) \leq A(a) = 0.5.$$

Furthermore, l(A) = (0.5, 0.3, 0.4) and r(A) = (0.5, 0.3, 0.4). l(r(A)) = Aand $rl(A) = (0.5, 0.5, 0.6) \neq A$. Hence A is *l*-stable but not *r*-stable. Since $0.6 = A(b) \odot e_2^{-1}(b, a) \not\leq A(a) = 0.5$, the converse of Theorem 3.3(5) cannot be true.

(2) For B = (0.3, 0.3, 0.8), r(B) = (0.7, 0.7, 0.2) and l(r(B)) = B. Since $r(A) \wedge r(B) = (0.5, 0.4, 0.2)$, we have $A \sqcup B = l(r(A) \wedge r(B)) = (0.5, 0.6, 0.8)$.

Representations of Bounded Lattices 4

Definition 4.1 [7] A map $F: X \to L$ is called a *fuzzy filter* on X if it satisfies the following conditions:

(F1) F(1) = 1, F(0) = 0,

(F2) $F(x \wedge y) \ge F(x) \wedge F(y)$,

(F3) if $x \leq y$, then $F(x \wedge y) \geq F(x) \wedge F(y)$.

A map $I: X \to L$ is called a *fuzzy ideal* on X if it satisfies the following conditions:

(I1) I(1) = 0, I(0) = 1,

(I2) $I(x \lor y) \ge I(x) \land I(y)$,

(I3) if $x \leq y$, then $I(x) \geq I(y)$.

Definition 4.2 Let $(X, \land, \lor, 0, 1)$ be a bounded lattice. A pair P = (F, I)is called a *fuzzy filter-ideal* if $F \wedge I = 0$ where F (resp. I) is a fuzzy filter (resp. ideal) on X. We will denote $P(L^X)$ the family of all fuzzy filter-ideal pairs and denote $M(L^X)$ the family of all maximal fuzzy filter-ideal pairs.

Theorem 4.3 Let $(X, \wedge, \vee, 0, 1)$ is a bounded lattice. Define $e_X^1, e_X^2 : P(L^X) \times$ $P(L^X) \to L$ as follows:

$$e_X^1((F_1, I_1), (F_2, I_2)) = \begin{cases} \bigwedge_{x \in X} (F_1(x) \to F_2(x)), & \text{if } I_1 \le I_2, \\ 0, & \text{otherwise}, \end{cases}$$

$$e_X^2((F_1, I_1), (F_2, I_2)) = \begin{cases} \Lambda_{x \in X}(I_2(x) \to I_1(x)), & \text{if } F_2 \leq F_1, \\ 0, & \text{otherwise,} \end{cases}$$

and $\bar{a}: P(L^X) \to L$ as $\bar{a}((F, I)) = F(a) \lor I(a)$. Then:

(1) $(P(L^X), e_X^1, e_X^2)$ is a doubly fuzzy preordered set. (2) $\bar{a} = lr(\bar{a}); i.e. \ \bar{a} \in L^{P(L^X)}$.

(3) $(L^{P(L^X)}, \Box, \sqcup, \overline{0}, \overline{1})$ is a lattice with, for each $\overline{a}, \overline{b} \in L^{P(L^X)}$,

$$\bar{a} \sqcap \bar{b} = \bar{a} \land \bar{b}, \ \bar{a} \sqcup \bar{b} = l(r(\bar{a}) \land r(\bar{b})).$$

Proof. (1) e_X^1 is a fuzzy preorder on $P(L^X)$ from:

$$\begin{aligned} e_X^1((F_1, I_1), (F_2, I_2)) & \odot e_X^1((F_2, I_2), (F_3, I_3)) \\ &= \bigwedge_{x \in X} (F_1(x) \to F_2(x)) \odot \bigwedge_{x \in X} (F_2(x) \to F_3(x)) \\ &\leq (F_1(x) \to F_2(x)) \odot (F_2(x) \to F_3(x)) \leq (F_1(x) \to F_3(x)) \end{aligned}$$

Similarly, e_X^2 is a fuzzy preorder on $P(L^X)$.

(2) \bar{a} is e_X^1 -extensional because

$$\begin{aligned} \bar{a}(F,I) &\odot e_X^1((F,I), (F_1,I_1) \\ &\leq (F(a) \lor I(a)) \odot \bigwedge_{x \in X} (F(x) \to F_1(x)) \\ &\leq F(a) \odot (F(a) \to F_1(a)) \lor I(a) \\ &\leq F_1(a) \lor I(a) \leq F_1(a) \lor I_1(a) = \bar{a}(F_1,I_1). \end{aligned}$$

Also, \bar{a} is $(e_X^2)^{-1}$ -extensional because

 $\bar{a}(F, I) \odot e_X^2((F_1, I_1), (F, I))$ $\leq (F(a) \lor I(a)) \odot \bigwedge_{x \in X} (I(x) \to I_1(x))$ $\leq F(a) \lor (I(a) \odot (I(a) \to I_1(a)))$ $\leq F(a) \lor I_1(a) \leq F_1(a) \lor I_1(a) = \bar{a}(F_1, I_1).$

From Theorem 3.3 (3) and (5), $\bar{a} = lr(\bar{a})$. (3) It follows from Theorem 3.5.

Theorem 4.4 If (F, I) is a fuzzy filter-ideal pair, then there exists a maximal fuzzy filter-ideal pair (F_m, I_m) such that $F \leq \chi_{F_0} \leq F_m$ and $I \leq \chi_{I_0} \leq I_m$ where χ_{F_0} and χ_{I_0} are characteristic functions with $F_0 = \{x \in X \mid F(x) > 0\}$ and $I_0 = \{x \in X \mid I(x) > 0\}$.

Proof. We easily show that F_0 and I_0 are classical filter and ideal, respectively. By Zorn's Lemma, there exists maximal filter F_1 and ideal I_1 , respectively. Put characteristic functions $F_m = \chi_{F_1}$ and $I_m = \chi_{I_1}$. The results hold.

We denote $[a) = \{x \in X \mid a \le x\}$ and $(b] = \{x \in X \mid x \le b\}.$

Theorem 4.5 Let $(X, \land, \lor, 0, 1)$ be a bounded lattice. Define $e_1, e_2 : M(L^X) \times M(L^X) \to L$ as follows:

$$e_1((F_1, I_1), (F_2, I_2)) = \begin{cases} 1, & \text{if } F_1 \leq F_2, \\ 0, & \text{otherwise,} \end{cases}$$
$$e_2((F_1, I_1), (F_2, I_2)) = \begin{cases} 1, & \text{if } I_1 \leq I_2, \\ 0, & \text{otherwise.} \end{cases}$$

and $\hat{a}: M(L^X) \to L$ as $\hat{a}((F, I)) = F(a)$. Then: (1) $(M(L^X), e_1, e_2)$ is a doubly fuzzy ordered set. (2) $r(\hat{a})(F, I) = I(a)$. (3) $\hat{a} = lr(\hat{a}); i.e.$ $\hat{a} \in L^{M(L^X)}$. (4) $(L^{M(L^X)}, \Box, \sqcup, \overline{0}, \overline{1})$ is a lattice with

$$\hat{a} \sqcap b = \hat{a} \land b = a \land b,$$
$$\hat{a} \sqcup \hat{b} = l(r(\hat{a}) \land r(\hat{b})) = \widehat{a \lor b}.$$

Proof. (1) For $e_1((F_1, I_1), (F_2, I_2)) = e_2((F_1, I_1), (F_2, I_2)) = 1$, then $F_1 \leq F_2$ and $I_1 \leq I_2$. From the above theorem, since F_i and I_i are maximal, $F_1 = F_2$ and $I_1 = I_2$.

(2) Put $I = \chi_A$. If $a \in A$; i.e. $I(a) = \chi_A(a) = 1$ and $e_2((F, I), (F_1, I_1)) = 1$, then $I_1(a) = 1$. Thus $F_1(a) = 0$. It implies

$$I(a) = e_2((F, I), (F_1, I_1)) \to F_1^*(a) = F_1^*(a) = 1.$$

If $a \in A$; i.e. $I(a) = \chi_A(a) = 1$ and $e_2((F, I), (F_1, I_1)) = 0$, then

$$I(a) = e_2((F, I), (F_1, I_1)) \to F_1^*(a) = 0 \to F_1^*(a) = 1.$$

If $a \notin A$; i.e. $I(a) = \chi_A(a) = 0$,

$$0 = I(a) \le e_2((F, I), (F_1, I_1)) \to F_1^*(a)$$

Thus,

$$I(a) \leq \bigwedge_{(F_1,I_1)\in M(L^X)} e_2((F,I),(F_1,I_1)) \to \hat{a}^*(F_1,I_1) = r(\hat{a})(F,I).$$

Conversely, if I(a) = 0, then $\chi_{[a]} \wedge I = 0$. There exists $(F_1, I_1) \in M(L^X)$ with $(\chi_{[a]}, I) \leq (F_1, I_1)$ such that

$$F_1(a) = 1, I \le I_1.$$

Thus

$$r(\hat{a})(F,I) = \bigwedge_{(F_1,I_1)\in M(L^X)} e_2((F,I), (F_1,I_1)) \to \hat{a}^*(F_1,I_1) \\ \leq e_2((F,I), (F_1,I_1)) \to \hat{a}^*(F_1,I_1) = F_1^*(a) = I(a) = 0$$

If I(a) = 1, trivially, $r(\hat{a})(F, I) \leq I(a)$. Thus, $r(\hat{a})(F, I) \leq I(a)$.

(3) Since $r(\hat{a})(F, I) = I(a)$, we only show that $lr(\hat{a})(F, I) = l(I(a)) = F(a)$. Put $F = \chi_A$. If $a \in A$; i.e. $F(a) = \chi_A(a) = 1$ and $e_1((F, I), (F_1, I_1)) = 1$, then $F_1(a) = 1$. Thus $I_1(a) = 0$. It implies

$$F(a) = e_1((F, I), (F_1, I_1)) \to r^*(\hat{a})(F_1, I_1) = I_1^*(a) = 1.$$

If $a \in A$ and $e_1((F, I), (F_1, I_1)) = 0$, then

$$F(a) = e_1((F, I), (F_1, I_1)) \to r^*(\hat{a})(F_1, I_1) = 0 \to I_1^*(a) = 1.$$

If $a \notin A$; i.e. $F(a) = \chi_A(a) = 0$,

$$0 = F(a) \le e_1((F, I), (F_1, I_1)) \to r^*(\hat{a})(F_1, I_1).$$

Thus,

$$F(a) \leq \bigwedge_{(F_1,I_1)\in M(L^X)} e_1((F,I), (F_1,I_1)) \to r^*(\hat{a})(F_1,I_1) = lr(\hat{a})(F,I).$$

Conversely, if F(a) = 0, then $\chi_{[a]} \wedge F = 0$. There exists $(F_1, I_1) \in M(L^X)$ with $(F, \chi_{[a]}) \leq (F_1, I_1)$ such that

$$F \le F_1, I_1(a) = 1.$$

Thus

$$lr(\hat{a})(F,I) = \bigwedge_{(F_1,I_1)\in M(L^X)} e_1((F,I), (F_1,I_1)) \to r^*(\hat{a})(F_1,I_1) \\ \leq e_1((F,I), (F_1,I_1)) \to r^*(\hat{a})(F_1,I_1) = I_1^*(a) = F(a) = 0.$$

If F(a) = 1, trivially, $lr(\hat{a})(F, I) \le F(a)$. Thus, $lr(\hat{a})(F, I) \le F(a)$. (4)

$$\begin{aligned} (\hat{a} \sqcup \hat{b})(F,I) &= l(r(\hat{a})(F,I) \wedge r(\hat{b})(F,I)) = l(I(a) \wedge I(b)) \\ &= l(I(a \lor b)) = l(r(a \lor b)) = a \lor b. \end{aligned}$$
$$(\hat{a} \sqcap \hat{b})(F,I) &= \hat{a}(F,I) \wedge \hat{b}(F,I)) = F(a) \wedge F(b) \\ &= F(a \land b) = a \land b. \end{aligned}$$

Theorem 4.6 Let $(X, \wedge, \vee, 0, 1)$ is a bounded lattice. Define a mapping $h: X \to L^{M(L^X)}$ as

$$h(a)(F,I) = \begin{cases} \hat{a}(F,I), & \text{if } a \notin \{0,1\}, \\ 1, & \text{if } a = 1, \\ 0, & \text{if } a = 0, \end{cases}$$

(1) r(h(a))(F, I) = I(a) for all $a \in X$.

(2) h(a) is *l*-stable for every $a \in X$.

(3) h is a lattice embedding.

Proof. (1) Since $r(h(a))(F, I) = r(\hat{a})(F, I)$, by Theorem 4.5(2), $r(h(a))(F, I) = r(\hat{a})(F, I) = I(a)$.

(2) It follows from Theorem 4.5(3).

(3) Let h(a) = h(b). For $(\chi_{[a)}, I) \in M(L^X)$, we have $h(a)(\chi_{[a)}, I) = \chi_{[a)}(a) = 1 = h(b)(\chi_{[a)}, I) = \chi_{[a)}(b)$. Thus, $b \ge a$. For $(\chi_{[b)}, I) \in M(L^X)$, we have $h(b)(\chi_{[b)}, I) = \chi_{[b)}(b) = 1 = h(a)(\chi_{[b)}, I) = \chi_{[b)}(a)$. Thus, $b \le a$. Hence a = b. Thus, h is injective.

$$(h(a) \sqcup h(b))(F, I) = l(r(h(a))(F, I) \land r(h(b))(F, I)) = l(I(a) \land I(b)) \\ = l(I(a \lor b)) = l(r(h(a \lor b))) = h(a \lor b).$$

$$(h(a) \sqcap h(b))(F, I) = h(a)(F, I) \land h(b)(F, I)) = F(a) \land F(b)$$

= $F(a \land b) = h(a \land b).$

Example 4.7 Let $X = \{0, a, b, c, 1\}$ be a set and $(L = [0, 1], \odot)$ with $x \odot y = \max\{0, x + y - 1\}$. Let $(X, \land, \lor, 0, 1)$ is a bounded lattice as follows:

\wedge	0	a	b	с	1	\vee	0	a	b	с	1
0	0	0	0	0	0	0	0	a	b	с	1
a	0	a	0	0	a	a	a	a	1	1	1
b	0	0	b	с	b	b	b	1	b	b	1
с	0	0	с	с	с	с	с	1	b	с	1
1	0	a	b	с	1	1	1	1	1	1	1

(1) Put F(1) = 1, $F(a) = \frac{1}{2}$, F(x) = 0, otherwise and I(0) = 1, $I(c) = \frac{1}{3}$, I(x) = 0, otherwise. For $(F, I) \in P(L^X)$, there exists $(\chi_{[a)}, \chi_{(b]}) \in M(L^X)$ such that $F \leq \chi_{[a]}$ and $I \leq \chi_{(b]}$.

$$\bar{0}(F,I) = F(0) \lor I(0) = 1, \quad \bar{1}(F,I) = F(1) \lor I(1) = 1, \\ \bar{a}(F,I) = F(a) \lor I(a) = \frac{1}{2}, \quad \bar{b}(F,I) = F(b) \lor I(b) = 0, \\ \bar{c}(F,I) = F(c) \lor I(c) = \frac{1}{3}.$$

(2) We obtain $M(L^X) = \{(\chi_{[a)}, \chi_{(b]}), (\chi_{[b)}, \chi_{(c]}), (\chi_{[c)}, \chi_{(a]})\}$. We obtain $h: W \to L^{M(L^X)}$ as follows:

$h(a)(\chi_{[a]},\chi_{(b]}) = \chi_{[a]}(a) = 1,$	$h(a)(\chi_{[b)},\chi_{(c]}) = \chi_{[b)}(a) = 0,$
$h(a)((\chi_{[c)},\chi_{(a]})) = \chi_{[c)}(a) = 0$	$h(b)(\chi_{[a)},\chi_{(b]}) = \chi_{[a)}(b) = 0,$
$h(b)(\chi_{[b]}, \chi_{(c]}) = \chi_{[b]}(b) = 1,$	$h(b)((\chi_{[c]}, \chi_{(a]})) = \chi_{[c]}(b) = 1,$
$h(c)(\chi_{[a]},\chi_{(b]}) = \chi_{[a]}(c) = 0,$	$h(c)(\chi_{[b]},\chi_{(c]}) = \chi_{[b)}(c) = 0,$
$h(c)((\chi_{[c)},\chi_{(a]})) = \chi_{[c)}(c) = 1.$	

Furthermore, we have

 $\begin{aligned} rh(a)(\chi_{[a)},\chi_{(b]}) &= \chi_{(b]}(a) = 0, & rh(a)(\chi_{[b)},\chi_{(c]}) = \chi_{(c]}(a) = 0, \\ rh(a)((\chi_{[c)},\chi_{(a]})) &= \chi_{(a]}(a) = 1, & rh(b)(\chi_{[a)},\chi_{(b]}) = \chi_{(b]}(b) = 1, \\ rh(b)(\chi_{[b)},\chi_{(c]}) &= \chi_{(c]}(b) = 0, & rh(b)((\chi_{[c)},\chi_{(a]})) = \chi_{(a]}(b) = 0, \\ rh(c)(\chi_{[a)},\chi_{(b]}) &= \chi_{(b]}(c) = 1, & rh(c)(\chi_{[b)},\chi_{(c]}) = \chi_{(c]}(c) = 1, \\ rh(c)((\chi_{[c)},\chi_{(a]})) &= \chi_{(a]})(c) = 0. \end{aligned}$

Example 4.8 Let $X = \{0, a, b, c, 1\}$ be a set and $(L = [0, 1], \odot)$ with $x \odot y = \max\{0, x + y - 1\}$. Let $(X, \land, \lor, 0, 1)$ be a bounded lattice as follows:

\wedge	0	a	b	с	1	\vee	0	a	b	с	1
0	0	0	0	0	0	0	0	a	b	с	1
a	0	a	0	0	a	a	a	a	1	1	1
b	0	0	b	0	b	b	b	1	b	1	1
с	0	0	0	с	с	с	с	1	1	с	1
1	0	a	\mathbf{b}	с	1	1	1	1	1	1	1

Let $(F, I) \in P(L^X)$ as $F(a) = \frac{1}{3}$, F(1) = 1, F(x) = 0 for $x \in \{0, b, c\}$ and $I(b) = \frac{1}{2}$, I(0) = 1, I(x) = 0 for $x \in \{1, a, b\}$. Then there exists $(\chi_{[a)}, \chi_{(b]}) \in M(L^X)$ such that $F \leq \chi_{[a]}$ and $I \leq \chi_{(b]}$. We obtain

$$M(L^{X}) = \{(\chi_{[a)}, \chi_{(b]}), (\chi_{[a)}, \chi_{(c]}), (\chi_{[b)}, \chi_{(a]}), (\chi_{[b)}, \chi_{(c]}), (\chi_{[c)}, \chi_{(a]}), (\chi_{[c)}, \chi_{(b]})\}.$$

We obtain $h: X \to L^{M(L^X)}$ as follows:

$$\begin{aligned} h(a)(\chi_{[a)},\chi_{(b]}) &= h(a)(\chi_{[a)},\chi_{(c]}) = 1, \quad h(a)(\chi_{[b)},\chi_{(a]}) = h(a)(\chi_{[b)},\chi_{(c]}) = 0, \\ h(a)(\chi_{[c)},\chi_{(a]}) &= h(a)(\chi_{[c)},\chi_{(b]}) = 0, \quad h(b)(\chi_{[a)},\chi_{(b]}) = h(b)(\chi_{[a)},\chi_{(c]}) = 0, \\ h(b)(\chi_{[b)},\chi_{(a]}) &= h(b)(\chi_{[b)},\chi_{(c]}) = 1, \quad h(b)(\chi_{[c)},\chi_{(a]}) = h(b)(\chi_{[c)},\chi_{(b]}) = 0, \\ h(c)(\chi_{[a)},\chi_{(b]}) &= h(c)(\chi_{[a)},\chi_{(c]}) = 0, \quad h(c)(\chi_{[b)},\chi_{(a]}) = h(c)(\chi_{[b)},\chi_{(c]}) = 0, \\ h(c)(\chi_{[c)},\chi_{(a]}) &= h(c)(\chi_{[c)},\chi_{(b]}) = 0. \end{aligned}$$

Similarly, we can obtain rh(a)(F, I) = I(a).

References

- G. Allwein, J.M. Dunn, *Kripke models for linear logic*, J. Symb. Logic 58, (1993) 514-545.
- [2] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
- [3] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
- [4] R. Bělohlávek, Similarity relations and BK-relational products, Information Sciences 126 (2000) 287-295.
- [5] I. Düntsch, E. Orłowska, A.M. Radzikowska, Lattice-based relation algebras and their rpresentabilty, Lecture Notes in Computer Science 2929, Springer-Verlag, 234-258, 2003.
- [6] I. Düntsch, E. Orłowska, A.M. Radzikowska, Lattice-based relation algebras II, Lecture Notes in Artificial Intelligence 4342, Springer-Verlag, 267-289, 2006.

- [7] W.Gähler, The general fuzzy filter approach to fuzzy topology I, *Fuzzy* Sets and Systems, **76**(1995), 205-224.
- [8] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [9] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
- [10] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning 50 (2009) 695-707.
- [11] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.
- [12] A. Urquhart, A topological representation theorem for lattices, Algebra Universalis 8, 1978, 45-58.

Received: March, 2012