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Abstract

We investigate the properties of doubly fuzzy preordered sets. We
show that the family of l-stable fuzzy sets is a bounded lattice. We inves-
tigate the relation between the bounded lattice X and (resp. maximal)
fuzzy filter-ideal pairs on X.
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1 Introduction

A fuzzy context consists of (X, Y,R) where X is a set of objects, Y is a set of
attributes and R is a relation between X and Y . Bělohlávek [2-4] developed
the notion of lattice structures with R ∈ LX×Y on a complete residuated lattice
L. Lattice structures are important mathematical tools for data analysis and
knowledge processing [2-4,10]. On the other hand, Urquhart [12] showed that
the dual space of a bounded lattice is a doubly ordered topological space.
This viewpoint develops many representation theorems for various algebraic
structures [1,5,6].

In this paper, we investigate the properties of doubly fuzzy preordered sets.
Using their properties, we define l-stable and r-stable fuzzy sets. We show that
the family of l-stable fuzzy sets is a bounded lattice. We investigate the relation
between the bounded lattice X and (resp. maximal) fuzzy filter-ideal pairs on
X .
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2 Preliminaries

Definition 2.1 [8,9,11] A triple (L,≤,⊙) is called a complete residuated

lattice iff it satisfies the following properties:
(L1) (L,≤, 1, 0) is a complete lattice where 1 is the universal upper bound

and 0 denotes the universal lower bound;
(L2) (L,⊙, 1) is a commutative monoid;
(L3) ⊙ is distributive over arbitrary joins, i.e.

(
∨

i∈Γ

ai) ⊙ b =
∨

i∈Γ

(ai ⊙ b).

Example 2.2 [8,9,11] (1) Each frame (L,≤,∧) is a complete residuated
lattice.

(2) The unit interval with a left-continuous t-norm t, ([0, 1],≤, t), is a
complete residuated lattice.

(3) Define a binary operation ⊙ on [0, 1] by x ⊙ y = max{0, x + y − 1}.
Then ([0, 1],≤,⊙) is a complete residuated lattice.

Let (L,≤,⊙) be a complete residuated lattice. A order reversing map
∗ : L → L defined by a∗ = a → 0 is called a strong negation if (a∗)∗ = a for
each a ∈ L.

In this paper, we assume (L,≤,⊙,∗ ) is a complete residuated lattice with
a strong negation ∗.

Definition 2.3 [8,9,11] Let X be a set. A function eX : X × X → L is
called fuzzy preorder on X if it satisfies the following conditions:

(E1) eX(x, x) = 1 for all x ∈ X ,
(E2) eX(x, y) ⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X ,
The pair (X, eX) is a fuzzy preorder set.
Let e1X , e

2
X be fuzzy preorder on X . A structure (X, e1X , e

2
X) is called a

doubly fuzzy preordered set. If for all x, y ∈ X , e1X(x, y) = e2X(x, y) = 1
implies x = y, (X, e1X , e

2
X) is called a doubly fuzzy ordered set.

Lemma 2.4 [8,9,11] For each x, y, z, xi, yi ∈ L, we define x → y =
∨
{z ∈

L | x⊙ z ≤ y}. Then the following properties hold.

(1) If y ≤ z, (x⊙ y) ≤ (x⊙ z) and x → y ≤ x → z and z → x ≤ y → x.

(2) x⊙ y ≤ x ∧ y and x⊙ (x → y) ≤ y.

(3) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi).
(4) (

∨
i∈Γ xi) → y =

∧
i∈Γ(xi → y).

(5) x → (
∨

i∈Γ yi) ≥
∨

i∈Γ(x → yi).
(6) (

∧
i∈Γ xi) → y ≥

∨
i∈Γ(xi → y).

(7)
∧

i∈Γ y
∗

i = (
∨

i∈Γ yi)
∗ and

∨
i∈Γ y

∗

i = (
∧

i∈Γ yi)
∗.

(8) (x⊙ y) → z = x → (y → z) = y → (x → z).
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(9) 1 → x = x.

(10) x ≤ y iff x → y = 1.
(11) (x → y) ⊙ (y → z) ≤ x → z.

(12) (x1 → y1) ⊙ (x2 → y2) ≤ (x1 ⊙ x2 → y1 ⊙ y2).

Example 2.5 (1) We define a map eL : L × L → L eL(x, y) = x → y =∨
{z ∈ L | x ⊙ z ≤ y} and e−1

L (x, y) = eL(y, x). Then (L, eL, e
−1
L ) is a doubly

fuzzy ordered set from Lemma 2.4 (10-11).
(2) We define a function eLX : LX × LX → L as eLX (f, g) =

∧
x∈X(f(x) →

g(x)). Then (LX , eLX ) is a fuzzy preordered set.
(3) If (X, eX) is a fuzzy preordered set and we define a function e−1

X (x, y) =
eX(y, x), then (X, e−1

X ) is a fuzzy preordered set.

3 Doubly Fuzzy Preordered Sets

Definition 3.1 Let e1X , e
2
X be fuzzy preorder on X .

(1) A ∈ LX is e1X -extensional iff A(x) ⊙ e1X(x, y) ≤ A(y).
(2) B ∈ LX is e2X -extensional iff B(x) ⊙ e2X(x, y) ≤ B(y).
The family of e1X-extensional (resp. e2X-extensional) fuzzy sets is denoted

by E1(L
X) (resp. E2(L

X)).

Definition 3.2 Let (X, e1X , e
2
X) be a doubly fuzzy preorderd set. We define

maps l, r : LX → LX as, for A∗(y) = (A(y))∗,

l(A)(x) =
∧

y∈X

(e1X(x, y) → A∗(y)),

r(A)(x) =
∧

y∈X

(e2X(x, y) → A∗(y)).

A fuzzy set A ∈ LX is called l-stable (resp. l-stable) iff lr(A) = A (resp.
rl(A)=A).

The family of all l-stable (resp. r-stable) fuzzy sets will be denoted by
L(LX) (resp. R(LX)).

Theorem 3.3 Let (X, e1X , e
2
X) be a doubly fuzzy preorderd set. We have the

following properties.

(1) l(A) ∈ E1(L
X) and l(A) ≤ A∗.

(2) r(A) ∈ E2(L
X) and r(A) ≤ A∗.

(3) If A ∈ E1(L
X), then A ≤ lr(A).

(4) If A ∈ E2(L
X), then A ≤ rl(A).
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(5) If A is (e2X)−1-extensional, then lr(A) = l(A∗) ≤ A.

(6) If A is (e1X)−1-extensional, then rl(A) = r(A∗) ≤ A.

(7) If A ∈ E1(L
X), then r(A) ∈ R(LX).

(8) If A ∈ E2(L
X), then l(A) ∈ L(LX).

(9) If A ∈ L(LX), then r(A) ∈ R(LX).
(10) If A ∈ R(LX), then l(A) ∈ L(LX).
(11) If A,B ∈ L(LX), then r(A) ∧ r(B) ∈ R(LX).

Proof. (1) By Lemma 2.4(2), we have

l(A)(x) ⊙ e1X(x, y) ⊙ e1X(y, z) ≤ l(A)(x) ⊙ e1X(x, z)
=

∧
y∈X(e1X(x, y) → A∗(y)) ⊙ e1X(x, z)

≤ (e1X(x, z) → A∗(z)) ⊙ e1X(x, z) ≤ A∗(z).

Thus, l(A)(x) ⊙ e1X(x, y) ≤
∧

y∈X(e1X(y, z) → A∗(z)) = l(A)(y). Furthermore,
l(A)(x) ≤ e1X(x, x) → A∗(x) = A∗(x).

(3) Since A is e1X-extensional, A(y)⊙e1X(y, w) ≤ A(w) and A(y) ≤ e1X(y, w) →
A(w). Thus,

l(r(A))(x) =
∧

y∈X(e1X(x, y) → r(A)∗(y))
=

∧
y∈X(e1X(x, y) → (

∧
w∈X(e2X(y, w) → A∗(w)))∗)

=
∧

y∈X(e1X(x, y) →
∨

w∈X(e2X(y, w) ⊙A(w)))
≥

∧
y∈X(e1X(x, y) →

∨
w∈X(e2X(y, w) ⊙ A(x) ⊙ e1X(x, w)))

≥
∧

y∈X(e1X(x, y) → (e2X(y, y) ⊙ A(x) ⊙ e1X(x, y)))
≥ A(x).

(5) Since r(A) ≤ A∗, then lr(A) ≥ l(A∗). Moreover, we have:

l(r(A))(x) =
∧

y∈X(e1X(x, y) → r(A)∗(y))
=

∧
y∈X(e1X(x, y) → (

∧
w∈X(e2X(y, w) → A∗(w)))∗)

=
∧

y∈X(e1X(x, y) →
∨

w∈X(e2X(y, w) ⊙A(w)))
(e2X(y, w) ⊙ A(w) ≤ A(y))

≤
∧

y∈X(e1X(x, y) → A(y)) = l(A∗)(x) ≤ A(x).

(7) Let A be e1X -extensional. Then A ≤ lr(A). Thus r(A) ≥ rlr(A). Since
r(A) be e2X -extensional, by (4), r(A) ≤ rlr(A).

(11) We have rl(r(A)∧ r(B)) ≤ rlr(A)∧ rlr(B) = r(A)∧ r(B). Moreover,
since r(A), r(B) ∈ E2(L

X), then r(A)∧ r(B) ∈ E2(L
X). Hence r(A)∧ r(B) ≤

rl(r(A) ∧ r(B)).
Other cases are similarly proved.

Theorem 3.4 Let (X, e1X , e
2
X) be a doubly fuzzy preorderd set. Define r :

E1(L
X) → E2(L

X) and l : E2(L
X) → E1(L

X). Then r and l form a Galois

connection;i.e. B ≤ r(A) iff A ≤ l(B).
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Proof. Let B ≤ r(A). Then l(B) ≥ lr(A) ≥ A because A ∈ E1(L
X).

Let B ≤ l(A). Then r(A) ≥ rl(B) ≥ B because B ∈ E2(L
X).

Theorem 3.5 Let (X, e1X , e
2
X) be a doubly fuzzy preorderd set. We define

A ⊓ B = A ∧B, A ⊔B = l(r(A) ∧ r(B)), A, B ∈ L(LX).

Then (L(LX),⊓,⊔, 0, 1) is a lattice.

Proof. If A ≤ B, then r(A) ≥ r(B) and lr(A) ≤ lr(B). Thus lr(A∧B) ≤
lr(A) ∧ lr(B) = A ∧ B.

Since A = lr(A) and B = lr(B), by Theorem 3.3(1), A and B are e1X -
extensional. Thus A ∧B is e1X -extensional because

(A ∧B)(x) ⊙ e1X(x, y) ≤ (A(x) ⊙ e1X(x, y)) ∧ (B(x) ⊙ e1X(x, y)) ≤ (A ∧ B)(y)

Thus lr(A ∧ B) = A ∧B;i.e. A ⊓B ∈ L(LX).
Since l(r(A)∧r(B)) is e1X -extensional from Theorem 3.3(1), we have l(r(A)∧

r(B)) ≤ lrl(r(A) ∧ r(B)).
Since r(A) and r(B) are e2X -extensional from Theorem 3.3(2), r(A)∧ r(B)

are e2X-extensional. From Theorem 3.3(2), r(A) ∧ r(B) ≤ rl(r(A) ∧ r(B)).
Thus, l(r(A) ∧ r(B)) ≥ lrl(r(A) ∧ r(B)). Therefore, l(r(A) ∧ r(B)) ∈ L(LX).
Let A ≤ C and B ≤ C for A,B,C ∈ L(LX). Then r(A) ≥ C and r(B) ≥ C.
Hence r(A)∧ r(B) ≥ r(C). Thus, l(r(A)∧ r(B)) ≤ l(r(C)) = C. So, A⊔B is
the least upper bound.

Example 3.6 Let X = {a, b, c} be a set, (L = [0, 1],⊙) with x ⊙ y =
max{0, x + y − 1} and e1, e2 : X ×X → [0, 1] as follows:

e1 a b c
a 1 0.8 1
b 0.3 1 0.5
c 0.7 0.6 1

e2 a b c
a 1 0.9 0.5
b 1 1 0.7
c 0.8 0.7 1

We denote A = (A(a), A(b), A(c)).
(1) Since e1(x, y) = e2(x, y) = 1 implies x = y, then (X, e1, e2) is a doubly

fuzzy ordered set.
(2) A = (0.5, 0.7, 0.6) is e1-extensional but not e2-extensional because

0.7 = A(b) ⊙ e2(b, a) 6≤ A(a) = 0.5.

Furthermore, l(A) = (0.5, 0.3, 0.4) and r(A) = (0.5, 0.3, 0.4). l(r(A)) = A

and rl(A) = (0.5, 0.5, 0.6) 6= A. Hence A is l-stable but not r-stable. Since
0.6 = A(b) ⊙ e−1

2 (b, a) 6≤ A(a) = 0.5, the converse of Theorem 3.3(5) cannot
be true.

(2) For B = (0.3, 0.3, 0.8), r(B) = (0.7, 0.7, 0.2) and l(r(B)) = B. Since
r(A) ∧ r(B) = (0.5, 0.4, 0.2), we have A ⊔B = l(r(A) ∧ r(B)) = (0.5, 0.6, 0.8).
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4 Representations of Bounded Lattices

Definition 4.1 [7] A map F : X → L is called a fuzzy filter on X if it
satisfies the following conditions:

(F1) F (1) = 1, F (0) = 0,
(F2) F (x ∧ y) ≥ F (x) ∧ F (y),
(F3) if x ≤ y, then F (x ∧ y) ≥ F (x) ∧ F (y).
A map I : X → L is called a fuzzy ideal on X if it satisfies the following

conditions:
(I1) I(1) = 0, I(0) = 1,
(I2) I(x ∨ y) ≥ I(x) ∧ I(y),
(I3) if x ≤ y, then I(x) ≥ I(y).

Definition 4.2 Let (X,∧,∨, 0, 1) be a bounded lattice. A pair P = (F, I)
is called a fuzzy filter-ideal if F ∧ I = 0 where F (resp. I) is a fuzzy filter
(resp. ideal) on X . We will denote P (LX) the family of all fuzzy filter-ideal
pairs and denote M(LX) the family of all maximal fuzzy filter-ideal pairs.

Theorem 4.3 Let (X,∧,∨, 0, 1) is a bounded lattice. Define e1X , e
2
X : P (LX)×

P (LX) → L as follows:

e1X((F1, I1), (F2, I2)) =

{ ∧
x∈X(F1(x) → F2(x)), if I1 ≤ I2,

0, otherwise,

e2X((F1, I1), (F2, I2)) =

{ ∧
x∈X(I2(x) → I1(x)), if F2 ≤ F1,

0, otherwise,

and ā : P (LX) → L as ā((F, I)) = F (a) ∨ I(a).
Then:

(1) (P (LX), e1X , e
2
X) is a doubly fuzzy preordered set.

(2) ā = lr(ā);i.e. ā ∈ LP (LX).

(3) (LP (LX),⊓,⊔, 0, 1) is a lattice with, for each ā, b̄ ∈ LP (LX),

ā ⊓ b̄ = ā ∧ b̄, ā ⊔ b̄ = l(r(ā) ∧ r(b̄)).

Proof. (1) e1X is a fuzzy preorder on P (LX) from:

e1X((F1, I1), (F2, I2)) ⊙ e1X((F2, I2), (F3, I3))
=

∧
x∈X(F1(x) → F2(x)) ⊙

∧
x∈X(F2(x) → F3(x))

≤ (F1(x) → F2(x)) ⊙ (F2(x) → F3(x)) ≤ (F1(x) → F3(x)).

Similarly, e2X is a fuzzy preorder on P (LX).
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(2) ā is e1X-extensional because

ā(F, I) ⊙ e1X((F, I), (F1, I1)
≤ (F (a) ∨ I(a)) ⊙

∧
x∈X(F (x) → F1(x))

≤ F (a) ⊙ (F (a) → F1(a)) ∨ I(a)
≤ F1(a) ∨ I(a) ≤ F1(a) ∨ I1(a) = ā(F1, I1).

Also, ā is (e2X)−1-extensional because

ā(F, I) ⊙ e2X((F1, I1), (F, I))
≤ (F (a) ∨ I(a)) ⊙

∧
x∈X(I(x) → I1(x))

≤ F (a) ∨ (I(a) ⊙ (I(a) → I1(a)))
≤ F (a) ∨ I1(a) ≤ F1(a) ∨ I1(a) = ā(F1, I1).

From Theorem 3.3 (3) and (5), ā = lr(ā).
(3) It follows from Theorem 3.5.

Theorem 4.4 If (F, I) is a fuzzy filter-ideal pair, then there exists a maxi-

mal fuzzy filter-ideal pair (Fm, Im) such that F ≤ χF0
≤ Fm and I ≤ χI0 ≤ Im

where χF0
and χI0 are characteristic functions with F0 = {x ∈ X | F (x) > 0}

and I0 = {x ∈ X | I(x) > 0}.

Proof. We easily show that F0 and I0 are classical filter and ideal, respectively.
By Zorn’s Lemma, there exists maximal filter F1 and ideal I1, respectively. Put
characteristic functions Fm = χF1

and Im = χI1. The results hold.

We denote [a) = {x ∈ X | a ≤ x} and (b] = {x ∈ X | x ≤ b}.

Theorem 4.5 Let (X,∧,∨, 0, 1) be a bounded lattice. Define e1, e2 : M(LX)×
M(LX) → L as follows:

e1((F1, I1), (F2, I2)) =

{
1, if F1 ≤ F2,

0, otherwise,

e2((F1, I1), (F2, I2)) =

{
1, if I1 ≤ I2,

0, otherwise.

and â : M(LX) → L as â((F, I)) = F (a).
Then:

(1) (M(LX), e1, e2) is a doubly fuzzy ordered set.

(2) r(â)(F, I) = I(a).
(3) â = lr(â);i.e. â ∈ LM(LX).

(4) (LM(LX ),⊓,⊔, 0, 1) is a lattice with

â ⊓ b̂ = â ∧ b̂ = â ∧ b,

â ⊔ b̂ = l(r(â) ∧ r(b̂)) = â ∨ b.
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Proof. (1) For e1((F1, I1), (F2, I2)) = e2((F1, I1), (F2, I2)) = 1, then F1 ≤
F2 and I1 ≤ I2. From the above theorem, since Fi and Ii are maximal, F1 = F2

and I1 = I2.
(2) Put I = χA. If a ∈ A;i.e. I(a) = χA(a) = 1 and e2((F, I), (F1, I1)) = 1,

then I1(a) = 1. Thus F1(a) = 0. It implies

I(a) = e2((F, I), (F1, I1)) → F ∗

1 (a) = F ∗

1 (a) = 1.

If a ∈ A;i.e. I(a) = χA(a) = 1 and e2((F, I), (F1, I1)) = 0, then

I(a) = e2((F, I), (F1, I1)) → F ∗

1 (a) = 0 → F ∗

1 (a) = 1.

If a 6∈ A;i.e. I(a) = χA(a) = 0,

0 = I(a) ≤ e2((F, I), (F1, I1)) → F ∗

1 (a).

Thus,

I(a) ≤
∧

(F1,I1)∈M(LX)

e2((F, I), (F1, I1)) → â∗(F1, I1) = r(â)(F, I).

Conversely, if I(a) = 0, then χ[a) ∧ I = 0. There exists (F1, I1) ∈ M(LX)
with (χ[a), I) ≤ (F1, I1) such that

F1(a) = 1, I ≤ I1.

Thus

r(â)(F, I) =
∧

(F1,I1)∈M(LX ) e2((F, I), (F1, I1)) → â∗(F1, I1)
≤ e2((F, I), (F1, I1)) → â∗(F1, I1) = F ∗

1 (a) = I(a) = 0

If I(a) = 1, trivially, r(â)(F, I) ≤ I(a). Thus, r(â)(F, I) ≤ I(a).
(3) Since r(â)(F, I) = I(a), we only show that lr(â)(F, I) = l(I(a)) = F (a).

Put F = χA. If a ∈ A;i.e. F (a) = χA(a) = 1 and e1((F, I), (F1, I1)) = 1, then
F1(a) = 1. Thus I1(a) = 0. It implies

F (a) = e1((F, I), (F1, I1)) → r∗(â)(F1, I1) = I∗1 (a) = 1.

If a ∈ A and e1((F, I), (F1, I1)) = 0, then

F (a) = e1((F, I), (F1, I1)) → r∗(â)(F1, I1) = 0 → I∗1 (a) = 1.

If a 6∈ A;i.e. F (a) = χA(a) = 0,

0 = F (a) ≤ e1((F, I), (F1, I1)) → r∗(â)(F1, I1).



Doubly Fuzzy Preordered Sets 305

Thus,

F (a) ≤
∧

(F1,I1)∈M(LX)

e1((F, I), (F1, I1)) → r∗(â)(F1, I1) = lr(â)(F, I).

Conversely, if F (a) = 0, then χ[a) ∧ F = 0. There exists (F1, I1) ∈ M(LX)
with (F, χ[a)) ≤ (F1, I1) such that

F ≤ F1, I1(a) = 1.

Thus

lr(â)(F, I) =
∧

(F1,I1)∈M(LX ) e1((F, I), (F1, I1)) → r∗(â)(F1, I1)
≤ e1((F, I), (F1, I1)) → r∗(â)(F1, I1) = I∗1 (a) = F (a) = 0.

If F (a) = 1, trivially, lr(â)(F, I) ≤ F (a). Thus, lr(â)(F, I) ≤ F (a).
(4)

(â ⊔ b̂)(F, I) = l(r(â)(F, I) ∧ r(b̂)(F, I)) = l(I(a) ∧ I(b))

= l(I(a ∨ b)) = l(r(â ∨ b)) = â ∨ b.

(â ⊓ b̂)(F, I) = â(F, I) ∧ b̂(F, I)) = F (a) ∧ F (b)

= F (a ∧ b) = â ∧ b.

Theorem 4.6 Let (X,∧,∨, 0, 1) is a bounded lattice. Define a mapping

h : X → LM(LX) as

h(a)(F, I) =





â(F, I), if a 6∈ {0, 1},
1, if a = 1,
0, if a = 0,

(1) r(h(a))(F, I) = I(a) for all a ∈ X.

(2) h(a) is l-stable for every a ∈ X.

(3) h is a lattice embedding.

Proof. (1) Since r(h(a))(F, I) = r(â)(F, I), by Theorem 4.5(2), r(h(a))(F, I) =
r(â)(F, I) = I(a).

(2) It follows from Theorem 4.5(3).
(3) Let h(a) = h(b). For (χ[a), I) ∈ M(LX), we have h(a)(χ[a), I) =

χ[a)(a) = 1 = h(b)(χ[a), I) = χ[a)(b). Thus, b ≥ a. For (χ[b), I) ∈ M(LX),
we have h(b)(χ[b), I) = χ[b)(b) = 1 = h(a)(χ[b), I) = χ[b)(a). Thus, b ≤ a.
Hence a = b. Thus, h is injective.

(h(a) ⊔ h(b))(F, I) = l(r(h(a))(F, I) ∧ r(h(b))(F, I)) = l(I(a) ∧ I(b))
= l(I(a ∨ b)) = l(r(h(a ∨ b))) = h(a ∨ b).



306 Yong Chan Kim and Young Sun Kim

(h(a) ⊓ h(b))(F, I) = h(a)(F, I) ∧ h(b)(F, I)) = F (a) ∧ F (b)
= F (a ∧ b) = h(a ∧ b).

Example 4.7 Let X = {0, a, b, c, 1} be a set and (L = [0, 1],⊙) with x⊙y =
max{0, x + y − 1}. Let (X,∧,∨, 0, 1) is a bounded lattice as follows:

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b c b
c 0 0 c c c
1 0 a b c 1

∨ 0 a b c 1
0 0 a b c 1
a a a 1 1 1
b b 1 b b 1
c c 1 b c 1
1 1 1 1 1 1

(1) Put F (1) = 1, F (a) = 1
2
, F (x) = 0,otherwise and I(0) = 1, I(c) = 1

3
, I(x) =

0,otherwise. For (F, I) ∈ P (LX), there exists (χ[a), χ(b]) ∈ M(LX) such that
F ≤ χ[a) and I ≤ χ(b].

0̄(F, I) = F (0) ∨ I(0) = 1, 1̄(F, I) = F (1) ∨ I(1) = 1,
ā(F, I) = F (a) ∨ I(a) = 1

2
, b̄(F, I) = F (b) ∨ I(b) = 0,

c̄(F, I) = F (c) ∨ I(c) = 1
3
.

(2) We obtain M(LX) = {(χ[a), χ(b]), (χ[b), χ(c]), (χ[c), χ(a])}. We obtain

h : W → LM(LX ) as follows:

h(a)(χ[a), χ(b]) = χ[a)(a) = 1, h(a)(χ[b), χ(c]) = χ[b)(a) = 0,
h(a)((χ[c), χ(a])) = χ[c)(a) = 0 h(b)(χ[a), χ(b]) = χ[a)(b) = 0,
h(b)(χ[b), χ(c]) = χ[b)(b) = 1, h(b)((χ[c), χ(a])) = χ[c)(b) = 1,
h(c)(χ[a), χ(b]) = χ[a)(c) = 0, h(c)(χ[b), χ(c]) = χ[b)(c) = 0,
h(c)((χ[c), χ(a])) = χ[c)(c) = 1.

Furthermore, we have

rh(a)(χ[a), χ(b]) = χ(b](a) = 0, rh(a)(χ[b), χ(c]) = χ(c](a) = 0,
rh(a)((χ[c), χ(a])) = χ(a](a) = 1, rh(b)(χ[a), χ(b]) = χ(b](b) = 1,
rh(b)(χ[b), χ(c]) = χ(c](b) = 0, rh(b)((χ[c), χ(a])) = χ(a](b) = 0,
rh(c)(χ[a), χ(b]) = χ(b](c) = 1, rh(c)(χ[b), χ(c]) = χ(c](c) = 1,
rh(c)((χ[c), χ(a])) = χ(a])(c) = 0.
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Example 4.8 Let X = {0, a, b, c, 1} be a set and (L = [0, 1],⊙) with x⊙y =
max{0, x + y − 1}. Let (X,∧,∨, 0, 1) be a bounded lattice as follows:

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

∨ 0 a b c 1
0 0 a b c 1
a a a 1 1 1
b b 1 b 1 1
c c 1 1 c 1
1 1 1 1 1 1

Let (F, I) ∈ P (LX) as F (a) = 1
3
, F (1) = 1, F (x) = 0 for x ∈ {0, b, c} and

I(b) = 1
2
, I(0) = 1, I(x) = 0 for x ∈ {1, a, b}. Then there exists (χ[a), χ(b]) ∈

M(LX) such that F ≤ χ[a) and I ≤ χ(b]. We obtain

M(LX) = {(χ[a), χ(b]), (χ[a), χ(c]), (χ[b), χ(a]), (χ[b), χ(c]), (χ[c), χ(a]), (χ[c), χ(b])}.

We obtain h : X → LM(LX ) as follows:

h(a)(χ[a), χ(b]) = h(a)(χ[a), χ(c]) = 1, h(a)(χ[b), χ(a]) = h(a)(χ[b), χ(c]) = 0,
h(a)(χ[c), χ(a]) = h(a)(χ[c), χ(b]) = 0, h(b)(χ[a), χ(b]) = h(b)(χ[a), χ(c]) = 0,
h(b)(χ[b), χ(a]) = h(b)(χ[b), χ(c]) = 1, h(b)(χ[c), χ(a]) = h(b)(χ[c), χ(b]) = 0,
h(c)(χ[a), χ(b]) = h(c)(χ[a), χ(c]) = 0, h(c)(χ[b), χ(a]) = h(c)(χ[b), χ(c]) = 0,
h(c)(χ[c), χ(a]) = h(c)(χ[c), χ(b]) = 0.

Similarly, we can obtain rh(a)(F, I) = I(a).
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