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Abstract

We investigate the properties of doubly fuzzy preordered sets. We
show that the family of l-stable fuzzy sets is a bounded lattice. We inves-
tigate the relation between the bounded lattice X and (resp. maximal)
fuzzy filter-ideal pairs on X.
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1 Introduction

A fuzzy context consists of (X, Y, R) where X is a set of objects, Y is a set of
attributes and R is a relation between X and Y. Beélohlavek [2-4] developed
the notion of lattice structures with R € L*X*Y on a complete residuated lattice
L. Lattice structures are important mathematical tools for data analysis and
knowledge processing [2-4,10]. On the other hand, Urquhart [12] showed that
the dual space of a bounded lattice is a doubly ordered topological space.
This viewpoint develops many representation theorems for various algebraic
structures [1,5,6].

In this paper, we investigate the properties of doubly fuzzy preordered sets.
Using their properties, we define l-stable and r-stable fuzzy sets. We show that
the family of l-stable fuzzy sets is a bounded lattice. We investigate the relation
between the bounded lattice X and (resp. maximal) fuzzy filter-ideal pairs on
X.
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2 Preliminaries

Definition 2.1 [8,9,11] A triple (L, <,®) is called a complete residuated
lattice iff it satisfies the following properties:

(L1) (L, <,1,0) is a complete lattice where 1 is the universal upper bound
and 0 denotes the universal lower bound;

(L2) (L, ®,1) is a commutative monoid;

(L3) ® is distributive over arbitrary joins, i.e.

(\/ a;)) ©b= \/(ain).

1€l i€l

Example 2.2 [8,9,11] (1) Each frame (L, <,A) is a complete residuated
lattice.

(2) The unit interval with a left-continuous t-norm t, ([0, 1], <,t), is a
complete residuated lattice.

(3) Define a binary operation ® on [0,1] by x ® y = max{0,z +y — 1}.
Then ([0, 1], <,®) is a complete residuated lattice.

Let (L,<,®) be a complete residuated lattice. A order reversing map
*: L — L defined by a* = a — 0 is called a strong negation if (a*)* = a for
each a € L.

In this paper, we assume (L, <,®,*) is a complete residuated lattice with
a strong negation *.

Definition 2.3 [8,9,11] Let X be a set. A function ex : X x X — L is
called fuzzy preorder on X if it satisfies the following conditions:

(E1) ex(x,z) =1 for all x € X

(E2) ex(x,y) ©®ex(y, z) < ex(z,2), for all z,y,z € X,

The pair (X, ex) is a fuzzy preorder set.

Let ek, e% be fuzzy preorder on X. A structure (X, ek, e%) is called a
doubly fuzzy preordered set. If for all z,y € X, el(z,y) = ek(z,y) = 1
implies = = vy, (X, ek, €%) is called a doubly fuzzy ordered set.

Lemma 2.4 [8,9,11] For each x,y, z,z;,y; € L, we define x — y = \/{z €
L|z®z<uy}. Then the following properties hold.
(D Ify<z,(z0y) <(zo0z)andr—y<z—zandz—>x<y—x

)

) ® = (Nier ¥i) = Nier(z — 4i).

) Vier zi) = ¥ = Nier(z: — ¥).

) = (Vier¥i) > Vier(z = us).

) (Nier i) = ¥ 2> Vier(@: = y).

) Nier i = (Vier vi)* and Vier yi = (Aier vi)™
J(xoy) mz=2x—=(y—=2) =y — (x— 2).
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9)1—z=rx.

(10) z <y iff t > y=1.

(1) (z =y (y—2) <z— -z

(12) (21 = y1) © (22 = 12) < (21 O T2 = Y1 O Y2).

Example 2.5 (1) We define amap e, : L X L — Leg(z,y) =z — y =
V{zeL|z®z<y}and e (2,9) = er(y,z). Then (L,er,e;') is a doubly
fuzzy ordered set from Lemma 2.4 (10-11).

(2) We define a function e;x : LX x L* — L as e x(f, 9) = Npex (f(z) =
g(z)). Then (LX, e;x) is a fuzzy preordered set.

)
(3) If (X, ex) is a fuzzy preordered set and we define a function ey (x, y) =
ex(y,x), then (X, ey') is a fuzzy preordered set.

3 Doubly Fuzzy Preordered Sets

Definition 3.1 Let e, e be fuzzy preorder on X.
(1) A € LY is el-extensional iff A(x) ® e (z,y) < A(y).
(2) B € LY is e%-extensional iff B(x) ® €% (z,y) < B(y).

The family of el -extensional (resp. e%-extensional) fuzzy sets is denoted
by Ei(LY) (vesp. Ep(LY)).

Definition 3.2 Let (X, ek, e%) be a doubly fuzzy preorderd set. We define
maps [,7 : LX — LY as, for A*(y) = (A(y)),

(A)(@) = A (ex(@,y) = A*(y)),

r(A)(@) = A (ex(z,y) = A*(y)).
yeX
A fuzzy set A € LY is called [-stable (resp. I-stable) iff Ir(A) = A (resp.
rl(A)=A).
The family of all [-stable (resp. r-stable) fuzzy sets will be denoted by
L(LYX) (resp. R(LY)).

Theorem 3.3 Let (X, ek, e%) be a doubly fuzzy preorderd set. We have the
following properties.

(1) I(A) € E (LX) and I(A) < A*.

(2) 7(A) € E5(LY) and r(A) < A*.
(3) If A € E\(LY), then A <Ir(A).
(4) If A € Eo(LY), then A < rl(A).
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[(A*)

If A is (%) '-extensional, then Ir(A) < A.
A)=r(A*) <A

(5)

(6) If A is (ek)"'-extensional, then ri(A)
(7) If A € E\(LY), then r(A) € R(LY).
(8) If A € Ey(LX), then I(A) € L(LX).
(9)
(10
(11

If A e L(LY), then r(A) € R(LY).
) If A€ R(LY), then I(A) € L(LY).
Y If A, B € L(LYX), then r(A) Ar(B) € R(LY).

Proof. (1) By Lemma 2.4(2), we have

i
= Ayex(ex(x,y) = A%(
< (ex(x,2) = A%(2)) © ex(z, 2)

Thus, I[(A)(z) © ek (z,y) < Ayex(ek(y,2) = A*(2)) = I(A)(y). Furthermore,
[(A)(z) < el(z,x) — A*(z) = A*(x).

(3) Since A is el -extensional, A(y)®ek (y, w) < A(w) and A(y) < ek (y,w) —
A(w). Thus,

r(A) (@) = Ayex(ex(z,y) = r(A)(y))
= Ayex(ex(z,y) = (Awex (X (y, w) = A*(w)))*)
= Ayex(ex(@,y) = Vuex (X (y,w) © A(w)))
> Nyex(ex(z,y) = Vex(ek (y,w) © Az) © ex (z, w)))
> Nyex (ex(z,y) = (X (y,y) © Az) © ex(z,y)))
> A(z).
(5) Since r(A) < A*, then Ir(A) > I(A*). Moreover, we have:
(r(A)(z) = Ayex(ex(a,y) = r(A)"(y))
= NAyex(ex(z,9) = (Awex (X (y,w) = A*(w)))*)
= Ayex(ex(@,y) = Vyex (X (y,w) © A(w)))

(7) Let A be ek-extensional. Then A < Ir(A). Thus r(A) > rir(A). Since
r(A) be e%-extensional, by (4), r(A) < rir(A).

(11) We have rl(r(A) Ar(B)) < rir(A) Arir(B) = r(A) Ar(B). Moreover,
since 7(A),r(B) € Ey(LY), then r(A) Ar(B) € Ey(LY). Hence r(A) Ar(B) <
rl(r(A) Ar(B)).

Other cases are similarly proved.

Theorem 3.4 Let (X, ek, e%) be a doubly fuzzy preorderd set. Define r :
E\(LX) — Eo(LX) and | : E5(LY) — Ey(LYX). Then r and | form a Galois
connection;i.e. B < r(A) iff A <I(B).
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Proof. Let B < 7(A). Then [(B) > Ir(A) > A because A € E;(LY).
Let B <I(A). Then r(A) > rl(B) > B because B € Ey(L*Y).

Theorem 3.5 Let (X, ek, e%) be a doubly fuzzy preorderd set. We define
ANB=AAB, AUB=I(r(A)Ar(B)), A B¢c L(LY).
Then (L(LX),M,,0,1) is a lattice.

Proof. If A < B, then r(A) > r(B) and Ir(A) < lr(B). Thus Ir(AAB) <
Ir(A) ANlr(B) = AN B.

Since A = Ir(A) and B = Ir(B), by Theorem 3.3(1), A and B are el-
extensional. Thus A A B is e-extensional because

(AN B)(2) © ex(z,y) < (A(z) © ex(2,y)) A (B(z) © ex(z,y)) < (AN B)(y)

Thus Ir(AA B) = AA Bjie. AT B € L(LY).

Since I(r(A)Ar(B)) is ek -extensional from Theorem 3.3(1), we have I (r(A)A
r(B)) <Irl(r(A) Ar(B)).

Since r(A) and r(B) are e%-extensional from Theorem 3.3(2), r(A) A r(B)
are e%-extensional. From Theorem 3.3(2), r(A) A r(B) < ri(r(A) A r(B)).
Thus, I(r(A) Ar(B)) > Irl(r(A) Ar(B)). Therefore, I[(r(A) Ar(B)) € L(LY).
Let A< C and B <C for A, B,C € L(L*X). Then r(A) > C and r(B) > C.
Hence r(A) Ar(B) > r(C). Thus, I(r(A) Ar(B)) < I(r(C)) =C. So, AL B is
the least upper bound.

Example 3.6 Let X = {a,b,c} be a set, (L = [0,1],®) with x © y =
max{0,z+y — 1} and ej,e5: X x X — [0, 1] as follows:

e1 | a b c e | a b c
al| 1 08 1 al| 1 09 05
b|103 1 0.5 b | 1 1 0.7
¢ 07 06 1 c |08 07 1

We denote A = (A(a), A(b), A(c)).

(1) Since ey (z,y) = ex(z,y) = 1 implies x = y, then (X, e, es) is a doubly
fuzzy ordered set.

(2) A=1(0.5,0.7,0.6) is e;-extensional but not es-extensional because

0.7=A(b) ® ea(b,a) £ A(a) = 0.5.

Furthermore, [(A) = (0.5,0.3,0.4) and r(A) = (0.5,0.3,0.4). [(r(A)) = A
and rl(A) = (0.5,0.5,0.6) # A. Hence A is [-stable but not r-stable. Since
0.6 = A(b) ® e3'(b,a) £ A(a) = 0.5, the converse of Theorem 3.3(5) cannot
be true.

(2) For B = (0.3,0.3,0.8), r(B) = (0.7,0.7,0.2) and [(r(B)) = B. Since
r(A) Ar(B) = (0.5,0.4,0.2), we have AU B =(r(A) Ar(B)) = (0.5,0.6,0.8).
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4 Representations of Bounded Lattices

Definition 4.1 [7] A map F' : X — L is called a fuzzy filter on X if it
satisfies the following conditions:

(F1) F(1) =1,F(0) =0,

(F2) F(x Ay) = F(x) A F(y),

(F3) if x <y, then F(x Ay) > F(x) A F(y).

A map I : X — L is called a fuzzy ideal on X if it satisfies the following
conditions:

(I1) I(1) = 0,1(0) =1,

(12) Iz v y) > I(2) A L(y),

(I3) if z <y, then I(z) > I(y).

Definition 4.2 Let (X, A,V,0,1) be a bounded lattice. A pair P = (F, 1)
is called a fuzzy filter-ideal if F' NI = 0 where F (resp. ) is a fuzzy filter

(resp. ideal) on X. We will denote P(L%) the family of all fuzzy filter-ideal
pairs and denote M(LY) the family of all maximal fuzzy filter-ideal pairs.

Theorem 4.3 Let (X, A, V,0,1) is a bounded lattice. Define ek, e% : P(LX)x
P(LX) — L as follows:

L (Fu 1), (P, 1)) = { Noex(Fi(0) = B). 6 < h

Nocx(Io(z) = L(z)), if Fy < F),
ex((F1, 1), (Fy, Iy)) :{ 0, Ll ) ofthzrwz’sel,
and @ : P(L*) — L as a((F,1)) = F(a) V I(a).
(1) (P(L¥X), ek, e%) is a doubly fuzzy preordered set.

(2) @ =Ir(a)ie. a e LPE), i
(3) (LPEY) 1, 1,0,71) 4s a lattice with, for each a,b e LPE™),

S|

artb=aAb, alb=I(r(a)Arb)).

Proof. (1) ek is a fuzzy preorder on P(L¥) from:

e ((F1, ), (Fy, ) © ex ((F, I2), (Fs, I3))
= Naex (F1(7) = Fo(7)) © Apex (Fa(x) — F3(7))
< (Fi(z) = (7)) © (Fa(x) — F3(x)) < (Fi(z) = F3(z)).

Similarly, €% is a fuzzy preorder on P(L¥).
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(2) a is el-extensional because

d(F,I)@6§((F,[),(F1,[1)

< (F(a) VI(a)) © Npex (F(z) = Fi(z))

< F(a) © (F(a) = Fi(a)) V I(a)
§F1(a)\/f(a) SFI( )\/[1( ): (Fl,ll)

Also, a is (€% )~ '-extensional because

a(F, 1) © ex((F1, ), (F, 1))
< (F(a) V I(a)) © Npex (I (x) = Li(x))

I(a
< F(a) v (I(a) © (I(a) = L(a)))
<F )\/Il()<F1()\/Il(>: (Fl,fl).
)

(
(a
From Theorem 3.3 (3) and (5), a = Ir(a).
(3) It follows from Theorem 3.5.

Theorem 4.4 If (F,1) is a fuzzy filter-ideal pair, then there exists a mazi-
mal fuzzy filter-ideal pair (F,, I,,) such that F < xp, < Fy, and I < x1, < I,
where g, and X1, are characteristic functions with Fy = {x € X | F(z) > 0}
and Iy ={x € X | I(z) > 0}.

Proof. We easily show that F and [ are classical filter and ideal, respectively.
By Zorn’s Lemma, there exists maximal filter F} and ideal I;, respectively. Put
characteristic functions F,, = xp and I,, = x,. The results hold.

We denote [a) ={z € X |a <z} and (b)) ={z € X | z < b}.

Theorem 4.5 Let (X,A,V,0,1) be a bounded lattice. Define ey, ey : M(LY)x
M(L*) — L as follows:

1, iy < F,
€1<(F1,]1), (F27]2)) = { 0 OfthelT’lUiS;
1, ifhh <1y,
€2<(F1,]1), (F27]2)> = { 0 OfthleT’lUi;e-

and a : M(LX) — L as a((F,I)) = F(a).
Then:
(1) (M(LY), e1,e2) is
E g r(a )g )).—[(a.
o) )g Ji.e.

a .
(LMED) 'm,1,0,1) is a lattice with
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Proof. (].) For 61((F1,]1), (FQ,IQ)) = 62((F1,Il), (FQ,IQ)) = ]_, then Fl S
F, and I; < I,. From the above theorem, since F; and I; are maximal, I} = F,
and [1 = [2.

(2) Put I = x4. If a € Ajie. I(a) = xa(a) =1 and ex((F, 1), (F1, 1)) =1,
then I;(a) = 1. Thus Fi(a) = 0. It implies

I(a) = ex((F, 1), (F1, [)) = Fy(a) = F{(a) = 1.
If a € Ajie. I(a) = xa(a) =1 and ex((F, 1), (F1, 1)) = 0, then
I(a) = eo((F, 1), (F1, 1)) — Fy(a) =0 — F(a) = 1.
Ifag Ajie I(a) =xa(a) =0,

0=1I(a) <ex((F,I),(F1, 1)) — F(a).

Ia)< A e(FD),(F.L) = d(F, L) =r@)(F ).

(F1,I1)eM (LX)

Conversely, if I(a) = 0, then x(o A I = 0. There exists (Fy,I;) € M(LY)
with (X[a), 1) < (£, 11) such that

Fl(a) = 1,[ S [1.
Thus

r(a)(F 1) = Ny memex) e2((F, 1), (Fy, 1)) — a*(Fy, 1)

2 eas((Ey 1), (F1, 1)) = a*(F1, 1) = Fy(a) = 1(a) =0
If I(a) =1, trivially, r(a)(F,I) < I(a). Thus, r(a)(F,I) < I(a).

(3) Since r(a)(F,I) = I(a), we only show that Ir(a)(F,I) = I(I(a))
Put F = xa. Ifa € Ajie. F(a) = xa(a) =1and e,((F,1I),(F1, 1)) =
Fi(a) =1. Thus [;(a) = 0. It implies

F(a)=e ((F, 1), (Fy, 1) = r*(a)(F1, ) = I(a) = 1.
If a € Aand e ((F,1),(Fy1,11)) =0, then
F(a)=e ((F, 1), (F, L) = r*(a)(Fy, L) =0 = I (a) = 1.
If a ¢ Ajie. F(a) = xa(a) =0,

0= F(CL) < 61((F, I), (Flall)) — T*(d)(Fl, [1)
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Thus,

Flay< A e(F D), (F,L) = (@) (R, L) = r@)(F ).

(F1,]1)eM (LX)

Conversely, if F(a) =0, then xjq) A F = 0. There exists (F, ;) € M(LY)
with (F, X[)) < (F1,11) such that

F S Fl,fl(a) =1.
Thus

r(@)(F 1) = N nyemexy el (B 1), (Fr, 1) — r*(a) (1, 1)
< ei(F. 1), (Fi, 1)) — r*(a)(Fy, ) = It (a) = F(a) = 0.

i
If F(a) =1, trivially, ir(a)(F,I) < F(a). Thus, Ir(a)(F,I) < F(a).
(4)

@Ub)(F, 1) =1U(r(@)(F, 1) Ar(b)(F, 1)) = 1(I(a) A1(b))
—(I(aVb)) =Il(r(aV b)) =aVb
(@nb)(F 1) =a(F,1) AB(F.D)) = F(a) A F(b)

F(aAb)=aNb.

Theorem 4.6 Let (X,A,V,0,1) is a bounded lattice. Define a mapping
h:X — LMEY) g

a(F, 1), ifa¢g{0,1},
hia)(F, 1) =1 1, ifa=1,
0, ifa =0,

(1) r(h(a))(F,I) = I(a) for alla € X.
(2) h(a) is l-stable for every a € X.
(3) h is a lattice embedding.

o )l:(’roo)f (1 )(S)lnce r(h(a))(F,I) =r(a)(F,I), by Theorem 4.5(2), r(h(a))(F,I) =
(2) It follows from Theorem 4.5(3).

(3) Let h(a) = h(b). For (xp).I) € M(LY), we have h(a)(x),I) =

Xw(a) =1 = h(b)(Xw), 1) = Xja)(b). Thus, b > a. For (xp),1) € M(LY),

we have h(0)(xp), [) = xp)(b) = 1 = h(a)(xp), 1) = xp)(a). Thus, b <

Hence a = b. Thus, h is injective.

(h(a) Uh(b))(F, T)
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I
>

(h(a) MAD))(F,I) (a)(F, 1) A

—~

ARO)(F ) = F(a) A F(D)
aAb).

||\_/
D‘

I
=
S
>

h

Example 4.7 Let X = {0,a,b,¢,1} beaset and (L = [0, 1], ®) with GOy =
max{0,z +y — 1}. Let (X, A,V,0,1) is a bounded lattice as follows:

A0 a b ¢ 1 V0 a b ¢ 1
00 0 0 0 O 0]0 a b ¢ 1
al0 a 0 0 a ala a 1 1 1
b0 0 b ¢ b bbb 1 b b 1
c|0 0 ¢ ¢ ¢ clec 1 b ¢ 1
110 a b ¢ 1 171 1 1 1 1

(1) Put F(1) =1,F(a) = %,F( ) = 0,0therwise and I(0) = 1,1(c) = 1, I(z) =
0,otherwise. For (F,I) € P(LY), there exists (x[), X(5) € ( X) such that
F < X and [ < X(b

0(F,I)=FO)VI0) =1, 1(FI)=FQ1)VvIQ1)=1,
a(F,I)=F(a)VI(a)=13, b(F,I)=F(b)VI(b) =0,
c(F,I)=F(c)VI(c)=3

(2) We obtain M(LY) = {(xX{): X@): (Xp)» X(@)s (X[e)s X(@]) }- We obtain
h: W — LML) a5 follows:

h(a)(X(a), X)) = Xy (@) =1, h(a)(Xw), X(d) = Xp)(a) =0,
h(a)((xe) X(a])) Xieo(@) =0 h(b)(X), X)) = X[a)(b) =0,
h(D)(X), X(c]) Xy (b) =1, h(0)((Xie)s X(a))) = Xie)(b) = 1,
h(e)(X(a) X(b) X[a)(c) =0, h(e) (X, X() = xpy(c) =0,
h(e)((X(e)s X(a))) = X[e)(c) = 1.
Furthermore, we have
rh(a)(Xia), X@) = x@ (@) =0, rh(a)(xp), X)) = X@(a) =0,
rh(a )((X[c) X(a])) = X(a }( a) =1, Th(b)(X[a),X(b]) = X(b}(b) =1,
rh(b)(X[b)> X(c)) = X(4(b) =0, rh(0)((X(e)> X(a])) = X(a (D) = 0,
rh(e)(X(a)> X)) = X@)(c) = 1, rh(e)(Xp)s X(d) = X@(c) =1,
rh(e)((X(e): X(@)) = X(a))(c) = 0.
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Example 4.8 Let X = {0,a,b,¢,1} beaset and (L = [0, 1], ®) with GOy =
max{0,x +y — 1}. Let (X, A, V,0,1) be a bounded lattice as follows:

A0 a b ¢ 1 V|0 a b ¢ 1

00 O O O O 0l0 a b ¢ 1

al0 a 0 0 a ala a 1 1 1

b0 0 b 0 b b|b 1 b 1 1

c|0 0 0 ¢ c clc 1 1 ¢ 1

110 a b ¢ 1 11 1 1 1 1
Let (F,I) € P(LX) as F(a) = %,F(l = 1,F(x) = 0 for z € {0,b,¢} and
I(b) = 3,1(0) = 1,I(z) = 0 for z € {1,a,b}. Then there exists (X[a), X¢]) €

M (LX) such that F' < xj,) and I < x(). We obtain

ML) = {(X1a), X1)» (X1ays X(@)» (X1 Xa1)s (X X@)» (X[)» Xta))s (X Xt1) }-

We obtain h : X — LMTY) a5 follows:

h(a)(Xa)s X)) = P(@)(X()s X() = 1, h(a)(Xp)s X(@) = M(a)(Xp)s X)) = 0,
h(a)(X(e)» X(a)) = P(@)(X(ey, X)) = 05 2(D)(X[a)s X(e) = R(D)(X[a), X(c)) = O,
h(D)(X1b)> X(a)) = R(0)(Xp)> X(e) =1, M(b)(Xe), X(a) = P(B)(X[)> Xt]) = O,
h(e)(Xia), X@) = P(c)(X(a)> X(g) = 0, h(c)(Xp)> X(a)) = R(c)(Xp)> X(e) = O,
h(c)(X1e)s X(a)) = P(c)(X(0)s X)) = 0.
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