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Abstract

A k-gon partition is a non-decreasing sequence of k positive inte-
gers such that the last element is less than the sum of the others. By
considering non-k-gon partitions, we derive the multivariable generating
function for k-gon partitions, as given by Andrews, Paule and Riese.
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1 Introduction

The k-gon partitions were introduced by Andrews, Paule and Riese as a parti-
tion counterpart to Hermite’s problem (see [2] and references there). They are
sequences a1 < as < --- < a; of positive integers such that ap < a1+---+ax_1.
Based on MacMahon’s Partition Analysis, Andrews, Paule and Riese [3] de-
rived the following multivariable generating function for k-gon partitions.

Theorem 1.1. Let T} be the set of k-gon partitions. Then

1 k (1—zy-ap)(1 =29 ap) - (1 — )

(at,...,ap) €Ty,

k—1
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Hirschhorn [4] proved this formula by substitutions. Xin [5] reduced the
calculation of Andrews, Paule and Riese using substitutions and exclusion
formula ([5, Equation (6.1)]). In this paper, we provide a simple proof for
Theorem 1.1.
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2 Proof of Theorem 1.1

Denote by P, the set of all partitions with k parts, i.e., non-decreasing se-
quences of k positive integers. Then Py \ T}, consists of sequences a; < -+ < a,
satisfying ar > a3 + -+ + ap_1. Setting d = ar — (a; + -+ + ax_1), then we

have
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Now using the same substitutions by = as — ay,...,by = ar — ax_1 as given by

Hirschhorn and Xin, we easily derive that
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Combining (2) and (3), we immediately obtain Equation (1). |
Especially, setting x; = ¢ in Equation (1) leads to

Corollary 2.1. Let Ti(n) be the set of k-gon partitions of n, i.e., Tp(n) =
{(ay,...,ar) €Tp:ay+ -+ a, =n}. Then
k 1 2k—2

n_ q B q
; Tk(n)|q" = 1—¢q)-—-(1—¢") 1—q(1—¢)(1—q%---(1—¢2kD)

(4)

This special case can also be derived by using the following bijection. Let
P.(n) ={(a1,...,ax) € Py : a1+ -+ a, =n}, and

Er(n) ={(e1,...,ex_1,ex): 1 < ey <---<ep_1,e, >0, and 2e1+- - -+2e,_1+e; = n}.
We have the obvious bijection

(a,...,a5) = (a1,...,ap_1,ap — (a1 + -+ ag_1)).
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Then Equation (4) follows from the well-known generating functions

qk

1-q¢)(1—¢*---(1—4g"

for partitions with k parts (see, for example, [1]).
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