Basicity of a perturbed system of exponents in generalized Lebesgue spaces ${ }^{1}$

Togrul R. Muradov
Institute of Mathematics and Mechanics
National Academy of Sciences, Azerbaijan, Baku

Abstract

We consider a system of exponents with piecewise continuous phase which can be a set of eigenfunctions of discontinuous differential operators. The basicity of this system in generalized Lebesgue spaces are established under certain conditions.

Mathematics Subject Classification: 34L10; 41A58; 42C15
Keywords: Bases with exponents, Generalized Lebesgue space, Variable exponent, Generalized Hardy classes.

1 Introduction

Consider the following system of exponents

$$
\begin{equation*}
\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z} \tag{1}
\end{equation*}
$$

where $\lambda_{n}(t)$ has the representation $\lambda_{n}(t)=n t-\alpha(t) \operatorname{sign} n, Z$ is the set of all integers and $\alpha(t)$ is a piecewise continuous function on the segment $[-\pi ; \pi]$. A great number of papers beginning with classic Theorem of Paley and Wiener [17] on the Riesz basicity in L_{2} and the results of Levinson [15] have been devoted to basis properties (basicity, completeness, minimality) of system (1) in classic Lebesgue spaces $L_{p} \equiv L_{p}(-\pi ; \pi), 1 \leq p \leq+\infty,\left(L_{\infty} \equiv C[-\pi ; \pi]\right)$ when $\alpha(t)=\alpha t a n d ~ \alpha \in R$ is a real parameter. Necessary and sufficient basicity conditions in $L_{p}, 1<p<\infty$, for a parameter $\alpha \in R$ have been obtained in $[16,19]$. The most general case has been considered in [2,3].

Recently, in the light of specific problems of mechanics and mathematical physics, there arose a great interest in studying this kind of matters in Lebesgue

[^0]spaces $L_{p(\cdot)}$ and Sobolev spaces $W_{p(\cdot)}^{m}$ with variable summability index $p(t)$. Detailed information about these problems can be found in $[10,11,14,18,21]$. Solving many partial differential equations by the method of separation of variables urges the necessity to study basis properties in the spaces $L_{p(\cdot)}$ and $W_{p(\cdot)}^{m}$ of the system of root functions of ordinary differential operators, generated by these problems.

The case $\alpha(t) \equiv \alpha t$ was earlier studied in [20] for $\alpha=0$ and in [5,7] for $\alpha \in$ R. The basicity in $L_{p(\cdot)}$ of the system (1) when $\lambda_{n}(t) \equiv-\operatorname{sign} n[\alpha t+\beta \operatorname{signt} t, t \in$ $[-\pi ; \pi], \alpha, \beta \in C$ are complex parameters, is established in [6].

The present paper studies the basicity of system (1) and its perturbations in generalized Lebesgue spaces $L_{p(\cdot)}$ with variable summability exponent $p(\cdot)$.

2 Necessary notion and facts. Basic Assumptions

We state some ideas from the theory of $L_{p(\cdot)}$ spaces. Let $p:[-\pi, \pi] \rightarrow[1,+\infty)$ be a Lebesgue measurable function. Denote by L_{0} the class of all measurable functions on $[-\pi, \pi]$ (with respect to Lebesgue measure). Denote

$$
I_{p}(f) \stackrel{\text { def }}{=} \int_{-\pi}^{\pi}|f(t)|^{p(t)} d t
$$

Let $\mathrm{L} \equiv\left\{f \in \mathrm{~L}_{0}: I_{p}(f)<+\infty\right\}$ and $p^{ \pm}=\sup _{[-\pi, \pi]}^{\operatorname{vrai}} p(t)^{ \pm 1}$. Subject to the condition $1 \leq p^{-} \leq p^{+}<+\infty$, L turns into a linear space with respect to ordinary linear operations of addition of functions and multiplication of a function by a number. With the norm

$$
\|f\|_{p(\cdot)} \stackrel{\text { def }}{=} \inf \left\{\lambda>0: I_{p}\left(\frac{f}{\lambda}\right) \leq 1\right\}, f \in \mathrm{~L}
$$

the space L is a Banach space and we denote it by $L_{p(\cdot)}$. Assume

$$
\begin{gathered}
W L_{\pi} \stackrel{\text { def }}{=}\left\{p: p(\pi)=p(-\pi) \quad \text { and } \quad \exists C>0 ; \quad \forall t_{1}, t_{2} \in[-\pi, \pi],\left|t_{1}-t_{2}\right| \leq \frac{1}{2} \Rightarrow\right. \\
\\
\left.\Rightarrow\left|p\left(t_{1}\right)-p\left(t_{2}\right)\right| \leq \frac{C}{-\ln \left|t_{1}-t_{2}\right|}\right\}
\end{gathered}
$$

This is a weakly Lipschitz class of functions periodic on $[-\pi, \pi]$. Throughout this paper $q(t)$ will denote the function conjugated to $p(t)$, that is, $\frac{1}{p(t)}+$ $\frac{1}{q(t)} \equiv 1$. The following Holder's generalized inequality holds:

$$
\int_{-\pi}^{\pi}|f(t) g(t)| d t \leq c\left(p^{-} ; p^{+}\right)\|f\|_{p(\cdot)}\|g\|_{q(\cdot)}
$$

where $c\left(p^{-} ; p^{+}\right)=1+\frac{1}{p^{-}}-\frac{1}{p^{+}}$. The following property is valid.
Property A.If $|f(t)| \leq|g(t)|$ a.e. on $(-\pi, \pi)$, then $\|f\|_{p(\cdot)} \leq\|g\|_{p(\cdot)}$.
We'll oftenly use this property. Also the following lemma is easily proved.
Lemma 2.1 Let $p \in W L_{\pi}, p(t)>0, \forall t \in[-\pi, \pi]$ and $\left\{\alpha_{i}\right\}_{1}^{m} \subset R(R$ is a real axis). The function $\omega(t)=\prod_{i=1}^{m}\left|t-t_{i}\right|^{\alpha_{i}}$ belongs to the space $L_{p(\cdot)}$ if $\alpha_{i}>-\frac{1}{p\left(t_{i}\right)}, \quad \forall i=\overline{1, m} ;$ where $\left\{t_{i}\right\}_{1}^{m} \subset[-\pi, \pi], \quad t_{i} \neq t_{j}$, for $i \neq j$.

Detailed information about these results can be found in [10,11, 14, 18, 21]. We'll assume that the function $\alpha(t)$ satisfies the following basic assumptions:
$(\alpha) \alpha(t)$ is piecewise Holder on $[-\pi, \pi]$ and $\left\{s_{k}\right\}:-\pi=s_{0}<s_{1}<\ldots<$ $s_{r}<s_{r+1}=\pi$ are its discontinuity points on $(-\pi, \pi)$. Let $\left\{h_{k}\right\}_{1}^{r}: h_{k}=$ $\alpha\left(s_{k}+0\right)-\alpha\left(s_{k}-0\right), k=\overline{1, r}$ be the jumps of the function $\alpha(t)$ at the points s_{k} and $h_{0}=\frac{\alpha(-\pi)-\alpha(\pi)}{\pi}$.

$$
(\beta)\left\{\frac{h_{k}}{\pi}-\frac{1}{p\left(s_{k}\right)}: k=\overline{0, r}\right\} \bigcap Z=\emptyset
$$

Define $\left\{n_{k}\right\}_{1}^{r} \subset Z$ by the following relations:

$$
-\frac{1}{q\left(s_{k}\right)}<\frac{h_{k}}{\pi}+n_{k-1}-n_{k}<\frac{1}{p\left(s_{k}\right)}, n_{0}=0, k=\overline{1, r}
$$

and assume that $\omega_{\pi}=h_{0}+n_{r}$.
Let $\omega=\{z:|z|<1\}$ be a unit circle on a complex plane and $\partial \omega$ be a unit circumference. Introduce the Hardy class

$$
H_{p(\cdot)}^{+} \equiv\left\{f: f \text { analytic in } \omega \text { and }\|f\|_{H_{p(\cdot)}^{+}}<+\infty\right\}
$$

where $\|f\|_{H_{p(\cdot)}^{+}} \equiv \sup _{0<r<1}\left\|f\left(r e^{i t}\right)\right\|_{p(\cdot)} . \quad H_{p(\cdot)}^{+}$is a Banach space if $1 \leq p^{-} \leq$ $p^{+}<+\infty$. Determine the Hardy class ${ }_{m} H_{p(\cdot)}^{-}$of functions analytic outside the unit circle of order less than or equal to $m \geq 0$ at infinity. Let $f(z)$ be an analytic function on $C \backslash \bar{\omega}(\bar{\omega}=\omega \cup \partial \omega)$, of finite order $m_{0} \leq m$ at infinity, i.e. $f(z)=f_{1}(z)+f_{2}(z)$, where $f_{1}(z)$ is a polynomial of degree m_{0}, and $f_{2}(z)$ is the right part of the expansion of the function $f(z)$ in Lorents series in the neighborhood of infinite point. We'll say that the function $f(z)$ belongs to the class ${ }_{m} H_{p(\cdot)}^{-}$, if the function $\varphi(z)=\overline{f_{2}\left(\frac{1}{\bar{z}}\right)}((\cdot)$ is a complex conjugation) belongs to the class $H_{p(\cdot)}^{+}$.

For our investigation we need some basic concepts of the theory of close bases, which are given as follows.

We'll denote a Banach space as B-space, the space conjugated to X is denoted by $X^{*} . N$ is the set of all positive integers and $Z_{+}=\{0\} \cup N$.

Definition 2.2 The system $\left\{x_{n}\right\}_{n \in N} \subset X$ in B-space X is called ω-linearly independent if $\sum_{n=1}^{\infty} a_{n} x_{n}=0 \Rightarrow a_{n}=0, \forall n \in N$.

The following lemma holds true.
Lemma 2.3 Let X be a B-space with the basis $\left\{x_{n}\right\}_{n \in N}$ and $F: X \rightarrow X a$ Fredholm operator. Then the following properties of the system $\left\{y_{n}=F x_{n}\right\}_{n \in N}$ in X are equivalent:

1) $\left\{y_{n}\right\}_{n \in N}$ is complete; 2) $\left\{y_{n}\right\}_{n \in N}$ is minimal; 3) $\left\{y_{n}\right\}_{n \in N}$ is ω - linearly independent; 4) $\left\{y_{n}\right\}_{n \in N}$ is basis isomorphic to $\left\{x_{n}\right\}_{n \in N}$.

Definition 2.4 The systems $\left\{x_{n}\right\}_{n \in N}$ and $\left\{y_{n}\right\}_{n \in N}$ in B-space X with the norm $\|\cdot\|$ are called p-close if $\sum_{n}\left\|x_{n}-y_{n}\right\|^{p}<+\infty$.

Definition 2.5 The minimal system $\left\{x_{n}\right\}_{n \in N} \subset X$ in B-space X is called a p-system if for $\forall x \in X:\left\{x_{n}^{*}(x)\right\}_{n \in N} \in l_{p}$, where $\left\{x_{n}^{*}\right\}_{n \in N} \subset X^{*}$ is its conjugate and l_{p} a usual space of p-absolutely summable sequences $\left\{a_{n}\right\}_{n \in N}$ normed by $\left\|\left\{a_{n}\right\}_{n \in N}\right\|_{l_{p}}=\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}$. In the case of basicity this system will be called a p-basis.

Detailed information about this kind of facts can be found in the monographs $[22,23]$ and in the papers $[1,8]$. We also need the following theorem.

Theorem 2.6 (Krein-Milman-Rutman [20]) Let Xbe a B-space with norm $\|\cdot\|$ and with normalized basis $\left\{x_{n}\right\}_{n \in N}$ and $\left\{x_{n}^{*}\right\}_{n \in N} \subset X^{*}$ be a system biorthogonal to it. If the system $\left\{y_{n}\right\}_{n \in N} \subset X$ satisfies the condition $\sum_{n=1}^{\infty}\left\|x_{n}-y_{n}\right\|<\eta^{-1}$, where $\eta=\sup _{n}\left\|x_{n}^{*}\right\|$, then it forms a basis for X isomorphic to $\left\{x_{n}\right\}_{n \in N}$.

To obtain our main result we'll use the following lemma.
Lemma 2.7 Let X be a B-space with the basis $\left\{x_{n}\right\}_{n \in N}$ and $\left\{x_{n}^{*}\right\}_{n \in N} \subset X^{*}$ be a system biorthogonal to $\left\{x_{n}\right\}_{n \in N}$. Assume that the system $\left\{y_{n}\right\}_{n \in N} \subset X$ differs from $\left\{x_{n}\right\}_{n \in N}$ by the finite number of elements, i.e. . Then, if $\Delta_{n_{0}}=$ $\operatorname{det}\left(x_{n}^{*}\left(y_{k}\right)\right)_{n, k=\overline{1, n_{0}}}=0$, the system $\left\{y_{n}\right\}_{n \in N}$ is not minimal in X.

We'll need the following
Theorem 2.8 Let $p \in W L_{\pi}, p^{-}>1$, and $A^{ \pm 1}, B^{ \pm 1} \in L_{\infty}(-\pi, \pi)$. If the double system of exponents $\left\{A(t) e^{i n t} ; B(t) e^{-i k t}\right\}_{n \in Z_{+} ; k \in N}$ forms a basis for $L_{p(\cdot)}(-\pi, \pi)$ it is isomorphic in $L_{p(\cdot)}$ to the classic system of exponents $\left\{e^{i n t}\right\}_{n \in Z}$, and the isomorphism is given by the operator S, where

$$
S f=A \sum_{0}^{\infty}\left(f, e^{i n x}\right) e^{i n t}+B \sum_{1}^{\infty}\left(f, e^{-i n x}\right) e^{-i n t},(f, g)=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d t
$$

The validity of this statement is proved in [4]. Using this result, the following theorem is easily proved.

Theorem 2.9 Let the system (1) forms a basis for $L_{p}, 1<p<+\infty$. Then 1) If $1<p \leq 2$ and $f \in L_{p}$, then $\left\{f_{n}\right\}_{n \in Z} \in l_{q}$, and the inequality

$$
\left\|\left\{f_{n}\right\}_{n \in Z}\right\|_{l_{q}} \leq m_{p}\|f\|_{p}
$$

is fulfilled, where m_{p} is a constant independent of f and $\|\cdot\|_{p}$ is the ordinary norm in L_{p}.
2) let $p>2$ and let the sequence of numbers $\left\{a_{n}\right\}_{n \in Z}$ belong to l_{q}. Then $\exists f \in L_{p}$ such that $f_{n}=a_{n}, \forall n \in Z$, and the inequality

$$
\|f\|_{p} \leq M_{p}\left\|\left\{f_{n}\right\}_{n \in Z}\right\|_{l_{q}}
$$

holds, where M_{p} is a constant independent of $\left\{f_{n}\right\}_{n \in Z}$.
Consider the Riemann homogeneous problem

$$
\begin{align*}
& F^{+}(\tau)-G(\tau) F^{-}(\tau)=0, \tau \in \partial \omega, \\
& F^{+} \in H_{p(\cdot)}^{+}, F^{-} \in{ }_{m} H_{p(\cdot)}^{-} \tag{2}
\end{align*}
$$

The following theorem is true for it.
Theorem 2.10 Let $p \in W L_{\pi}, p^{-}>1, G\left(e^{i t}\right)=e^{2 i \alpha(t)}$, where $\alpha(t)$ satisfies the condition (α) and the following inequalities be fulfilled:

$$
-\frac{1}{q(\pi)}<\frac{h_{0}}{\pi}<\frac{1}{p(\pi)} ;-\frac{1}{q\left(s_{k}\right)}<\frac{h_{k}}{\pi}<\frac{1}{p\left(s_{k}\right)}, k=\overline{1, r} .
$$

Then the general solution of Riemann homogeneous problem (2) has the form $F(z)=Z(z) P_{m_{0}}(z), m_{0} \leq m$, where $Z(z)$ is a canonical solution.

As immediate consequence of Theorem 2.10 is the following.
Corollary 2.11 Let all the conditions of theorem 2.10 be fulfilled. Then for $F^{-}(\infty)=0$, i.e. in the class $H_{p(\cdot)}^{+} \times{ }_{-1} H_{p(\cdot)}^{-}$, the homogeneous problem (2) has only a trivial solution.

Consider the Riemann inhomogeneous problem

$$
\begin{align*}
& F^{+}(\tau)-G(\tau) F^{-}(\tau)=f(\tau), \tau \in \partial \omega, \\
& F^{+} \in H_{p(\cdot)}^{+}, F^{-} \in_{m} H_{p(\cdot)}^{-}, \tag{3}
\end{align*}
$$

where $f \in L_{p(\cdot)}$ and $G(\tau)=e^{2 i \alpha(\arg \tau)}$. Consider the Cauchy type integral

$$
\begin{equation*}
F_{1}(z)=\frac{Z(z)}{2 \pi i} \int_{\partial \omega} \frac{f(\tau)}{Z^{+}(\tau)} \frac{d \tau}{\tau-z} \tag{4}
\end{equation*}
$$

where $Z^{+}(\tau)$ are non-tangential boundary values of the function $Z(z)$ on $\partial \omega$ inside the unit circle ω.

The following theorem is valid.
Theorem 2.12 Letp $\in W L_{\pi}, G\left(e^{i t}\right)=e^{2 i \alpha(t)}, \alpha(t)$ satisfy the condition (α) and the following inequality be fulfilled:

$$
\begin{equation*}
-\frac{1}{q\left(s_{k}\right)}<\frac{h_{k}}{\pi}<\frac{1}{p\left(s_{k}\right)}, k=\overline{0, r} . \tag{5}
\end{equation*}
$$

Then the general solution of the Riemann nonhomogeneous problem (3) in the class $H_{p(\cdot)}^{+} \times{ }_{m} H_{p(\cdot)}^{-}(m \geq 0)$ is of the form $F(z)=Z(z) P_{m_{0}}(z)+F_{1}(z)$, where

$$
\begin{equation*}
F_{1}(z)=\frac{Z(z)}{2 \pi i} \int_{\partial \omega} \frac{f(\tau)}{Z^{+}(\tau)} \frac{d \tau}{\tau-z} \tag{6}
\end{equation*}
$$

$Z(z)$ is a canonical solution of the corresponding homogeneous problem.
Corollary 2.13 Let all the conditions of theorem 2.12 be fulfilled. Then, provided $F(\infty)=0$, problem (3) has a unique solution $F_{1}(z)$ defined by (6).

3 Basicity of a double system of exponents

Consider the system (1). The following theorem is valid:
Theorem 3.1 Let $p \in W L_{\pi}, p^{-}>1$, and the function $\alpha(t)$ satisfy the condition (α). If inequalities (5) are fulfilled, then the system of exponents (1) forms a basis for $L_{p(\cdot)}$.

Proof. Consider the following Riemann nonhomogeneous problem

$$
\begin{align*}
& F^{+}(\tau)+G(\tau) F^{-}(\tau)=e^{i \alpha(\arg \tau)} f(\arg \tau), \tau \in \partial \omega, \\
& F^{+} \in H_{p(\cdot)}^{+} \times{ }_{-1} H_{p(\cdot)}^{-}, \quad F(\infty)=0, \tag{7}
\end{align*}
$$

where $f \in L_{p(\cdot)}$.
Let $p \in W L_{\pi}$ and $\alpha(t)$ satisfy the condition (α). Suppose that inequalities (5) are fulfilled. Then according to Corollary 2.13, problem (7) has a unique solution of the form (6). According to the results in [20] the system $\left\{e^{i n t}\right\}_{n \in Z}$
forms a basis for $L_{p(\cdot)}$. Denote by $\left\{g_{n}\right\}_{n \in Z}$ a biorthogonal coefficients of the function $g \in L_{p(\cdot)}$ with respect to the system $\left\{e^{i n t}\right\}_{n \in Z}$, i.e.

$$
g_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) e^{-i n t} d t, n \in Z
$$

It is obvious that $F^{ \pm}\left(e^{i t}\right) \in L_{p(\cdot)}$, and moreover, from $F \in H_{p(\cdot)}^{+} \times{ }_{-1} H_{p(\cdot)}^{-}$, $F(\infty)=0$ it follows that $F_{n}^{+}=0, \forall n>0 ; F_{n}^{-}=0, n \geq 0$. Consequently, the following expansions hold in $L_{p(\cdot)}$:

$$
F^{+}\left(e^{i t}\right)=\sum_{n=0}^{\infty} F_{n}^{+} e^{i n t} ; F^{-}\left(e^{i t}\right)=\sum_{n=1}^{\infty} F_{-n}^{-} e^{-i n t}
$$

Taking into account these expansions in (7), we get that the function f can be expanded as a series with respect to the system (1) in $L_{p(\cdot)}$. Let's prove the uniqueness of such series expansion. Let $e^{-i \alpha(t)} \sum_{n=0}^{\infty} a_{n} e^{i n t}+$
$+e^{i \alpha(t)} \sum_{n=1}^{\infty} b_{n} e^{-i n t}=0$ and

$$
f(t)=\sum_{n=0}^{\infty} a_{n} e^{i n t}, g(t)=\sum_{n=0}^{\infty} \overline{b_{n+1}} e^{i n t} .
$$

Then, we have

$$
\begin{equation*}
A(t) f(t)+B(t) \overline{g(t)}=0, t \in(-\pi, \pi) \tag{8}
\end{equation*}
$$

where $A(t)=e^{-i \alpha(t)}, B(t)=e^{-i[\alpha(t)-t]}$. It is obvious that

$$
\begin{equation*}
\int_{\partial \omega} f(\arg \tau) \tau^{n} d \tau=\sum_{k=0}^{\infty} a_{k} \int_{\partial \omega} \tau^{n+k} d \tau=0, \forall n \geq 0 \tag{9}
\end{equation*}
$$

According to the results of [9], it follows from (9) and $\underline{f \in L_{1}}(\partial \omega)$ that $\exists G \in$ $H_{1}^{+}: G^{+}(\tau)=f(\arg \tau)$, a.e. $\tau \in \partial \omega$. Assume $\Phi_{0}(z)=\overline{G\left(\frac{1}{\bar{z}}\right)},|z|>1$. Thus, $\Phi_{0}^{-}(\tau)=\overline{G^{+}(\tau)}, \tau \in \partial \omega$, where $\Phi^{-}(\tau)$ are non-tangential boundary values of $\Phi(z)$ on $\partial \omega$ outside the unique circle. It is clear that $G^{+}, \Phi_{0}^{-} \in L_{p(\cdot)}(\partial \omega)$. Then, from Smirnov Theorem [13] it follows that $G \in H_{p(\cdot)}^{+}$and $\Phi_{0} \in{ }_{0} H_{p(\cdot)}^{-}$. If $\Phi(z)=z^{-1} \Phi_{0}(z)$, it is clear that $\Phi \in{ }_{-1} H_{p(\cdot)}^{-}$, i.e. $\Phi(\infty)=0$. So, we have

$$
G^{+}\left(e^{i t}\right)=\sum_{n=0}^{\infty} a_{n} e^{i n t} ; G^{+}\left(e^{i t}\right)=\sum_{n=0}^{\infty} \overline{b_{n+1}} e^{i n t} .
$$

Consequently,

$$
\Phi_{0}^{-}\left(e^{i t}\right)=\overline{G^{+}\left(e^{i t}\right)}=\sum_{n=0}^{\infty} b_{n+1} e^{-i n t}, \Phi^{-}\left(e^{i t}\right)=\sum_{n=1}^{\infty} b_{n} e^{-i n t}
$$

As a result, from (8) we get the following conjugation problem in the classes $H_{p(\cdot)}^{+} \times{ }_{-1} H_{p(\cdot)}^{-}$:

$$
\begin{aligned}
& G^{+}(\tau)+G(\tau) \Phi^{-}(\tau)=0, \tau \in \partial \omega, \\
& (G ; \Phi) \in H_{p(\cdot)}^{+} \times{ }_{-1} H_{p(\cdot)}^{-} .
\end{aligned}
$$

Since all the conditions of Theorem 2.9 are fulfilled, from Corollary 2.11 we get $G(z) \equiv \Phi(z) \equiv 0$, i.e. $a_{n}=b_{n+1}=0, \forall n \geq 0$. This proves the basicity of the system (1) in $L_{p(\cdot)}$.

4 Perturbed basis with exponents

Consider the following perturbed system of exponents

$$
\begin{equation*}
\left\{e^{i \mu_{n}(t)}\right\}_{n \in Z} \tag{10}
\end{equation*}
$$

where $\mu_{n}(t)$ has the following form:

$$
\begin{equation*}
\mu_{n}(t)=n t-\alpha(t) \operatorname{sign} n+\beta_{n}(t), n \rightarrow \infty . \tag{11}
\end{equation*}
$$

Assume that the following condition is fulfilled:
(γ) the functions $\left\{\beta_{n}\right\}$ satisfy the relation

$$
\beta_{n}(t)=O\left(\frac{1}{n^{\gamma_{k}}}\right), t \in\left(s_{k}, s_{k+1}\right), k=\overline{0, r} ;\left\{\gamma_{k}\right\}_{1}^{r} \subset(0,+\infty)
$$

The following theorem is valid.
Theorem 4.1 Let the asymptotic formula (11) be true with functionsa (t) and $\beta_{n}(t)$ satisfying conditions (α) and (γ). Assume that the following inequalities hold:

$$
-\frac{1}{q(\pi)}<\omega_{\pi}<\frac{1}{p(\pi)}, \gamma>\frac{1}{\tilde{p}},
$$

where $\gamma=\min _{k} \gamma_{k}, \tilde{p}=\min \left\{p^{-} ; 2\right\}$ and the quantity ω_{π} is determined by the relations (β). Then the following properties of the system (10) in $L_{p(\cdot)}$ are equivalent:

1) it is complete;
2) it is minimal;
3) it is ω-linearly independent;
4) it forms a basis isomorphic to $\left\{e^{i n t}\right\}_{n \in Z}$.

Proof. We have

$$
\left|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right|=\left|e^{i \beta_{n}(t)}-1\right|=\left|\sum_{k=1}^{\infty} \frac{\beta_{n}^{k}(t)}{k!}\right| \leq \sum_{k=1}^{\infty} \frac{M n^{-\gamma}}{k!}=c n^{-\gamma}
$$

where $\gamma=\min _{k} \gamma_{k}$, and c is a constant independent of n. The last inequality follows from the condition (γ). Consider some special cases.
Let $\tilde{p}=\min \left\{p^{-} ; 2\right\}$ and $\gamma>\frac{1}{\tilde{p}}$. We have

$$
\sum_{n}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}^{p} \leq c_{p} \sum_{n} \frac{1}{|n|^{\gamma \tilde{p}}}<+\infty .
$$

Suppose that all conditions of Theorem 2.10 and inequalities (5) are fulfilled. Then system (1) forms a basis for $L_{p(\cdot)}$. By Theorem 2.8, it is isomorphic to the classical system with exponents $\left\{e^{i n t}\right\}_{n \in Z}$ in $L_{p(\cdot)}$. As a result, spaces of coefficients of the bases $\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z}$ and $\left\{e^{i n t}\right\}_{n \in Z}$ are congruent. Let $T: L_{p(\cdot)} \rightarrow L_{p(\cdot)}$ be a natural automorphism, i.e. $T\left[e^{i \lambda_{n}(t)}\right]=e^{i n t}, \forall n \in Z$. For all $f \in L_{p(\cdot)}$ let $\left\{f_{n}\right\}_{n \in Z}$ be a biorthogonal coefficients of f with respect to the system $\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z}$. Assume that $g=T f$. Consequently, $\left\{f_{n}\right\}_{n \in Z}$ is a Fourier coefficients of function g with respect to the system $\left\{e^{i n t}\right\}_{n \in Z}$. it follows directly from (11) and from condition (γ) that

$$
\sum_{n \in Z}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}^{\tilde{p}}<+\infty
$$

Consider the expression $\sum_{n}\left(e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right) f_{n}$. We have

$$
\begin{aligned}
& \sum_{n \in Z}\left\|\left(e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right) f_{n}\right\|_{p(\cdot)} \leq \sum_{n \in Z}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|\left|f_{n}\right| \leq \\
& \quad \leq\left(\sum_{n \in Z}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}^{\tilde{p}}\right)^{\frac{1}{\bar{p}}}\left(\sum_{n}\left|f_{n}\right|^{\tilde{q}}\right)^{\frac{1}{\tilde{q}}},
\end{aligned}
$$

where $\frac{1}{\tilde{p}}+\frac{1}{\tilde{q}}=1$. By the Hausdorff-Young theorem [3] we get

$$
\left(\sum_{n}\left|f_{n}\right|^{\tilde{q}}\right)^{\frac{1}{\tilde{q}}} \leq m_{1}\|g\|_{\tilde{p}}
$$

where m_{1} is a constant. From $\tilde{p} \leq p^{-}$and the continuous embedding $L_{p(\cdot)} \subset L_{\tilde{p}}$ we get

$$
\|g\|_{\tilde{p}} \leq m_{2}\|g\|_{p(\cdot)} \leq m_{2}\|T\|\|f\|_{p(\cdot)}, \text { for some } m_{2}>0
$$

As a result we have

$$
\left\|\sum_{n}\left(e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right) f_{n}\right\|_{p(\cdot)} \leq
$$

$$
\begin{equation*}
\leq m_{1} m_{2}\left(\sum_{n}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}^{\tilde{p}}\right)^{\frac{1}{\bar{p}}}\|f\|_{p(\cdot)} . \tag{12}
\end{equation*}
$$

Take $n_{0} \in N$ such that

$$
\delta=m_{1} m_{2}\|T\|\left(\sum_{|n|>n_{0}}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}^{\tilde{p}}\right)^{\frac{1}{\tilde{p}}}<1
$$

and assume that

$$
\omega_{n}(t)= \begin{cases}\lambda_{n}(t), & |n|>n_{0}, \\ \mu_{n}(t), & |n| \leq n_{0}\end{cases}
$$

Then it is clear that

$$
\begin{equation*}
\left\|\sum_{n}\left(e^{i \omega_{n}(t)}-e^{i \lambda_{n}(t)}\right) f_{n}\right\|_{p(\cdot)} \leq \delta\|f\|_{p(\cdot)} . \tag{13}
\end{equation*}
$$

It follows directly from (12) that the expression $\sum_{n}\left(e^{i \omega_{n}(t)}-e^{i \lambda_{n}(t)}\right) f_{n}$ represents a function from $L_{p(\cdot)}$, denote it by $T_{0} f$. Taking into account (13), we get $\left\|T_{0}\right\| \leq \delta<1$. Thus, the operator $F=I+T_{0}$ is invertible and it is easy to see that $F\left[e^{i \lambda_{n}(t)}\right]=e^{i \omega_{n} t}, \forall n \in Z$. Consequently, the system $\left\{e^{i \omega_{n}(t)}\right\}_{n \in Z}$ forms a basis isomorphic to $\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z}$ for $L_{p(\cdot)}$. The systems $\left\{e^{i \mu_{n}(t)}\right\}_{n \in Z}$ and $\left\{e^{i \omega_{n}(t)}\right\}_{n \in Z}$ differ by the finite number of elements. The further evidence follows directly from Lemma 2.1. Thus, the theorem is proved.

Now we consider the case when $\gamma>1$. In this case it is obvious that it holds $\sum_{n=-\infty}^{\infty}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}<+\infty$. Let all the conditions of Theorem 2.12 be fulfilled. Then the system $\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z}$ forms a basis for $L_{p(\cdot)}$. Denote by $\left\{\vartheta_{n}\right\}_{n \in Z} \subset L_{q(\cdot)}$ the system biorthogonal to it. Assume $\vartheta=\sup _{n}\left\|\vartheta_{n}\right\|_{q(\cdot)}$. It is clear that $\exists n_{0} \in N$:

$$
\sum_{|n| \geq n_{0}+1}\left\|e^{i \lambda_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}<\vartheta^{-1} .
$$

Consider the following functions:

$$
\tilde{\lambda}_{n}(t)= \begin{cases}\mu_{n}(t), & |n|>n_{0} \\ \lambda_{n}(t), & |n| \leq n_{0}\end{cases}
$$

Thus,

$$
\sum_{n=-\infty}^{\infty}\left\|e^{i \tilde{\lambda}_{n}(t)}-e^{i \mu_{n}(t)}\right\|_{p(\cdot)}<\vartheta^{-1}
$$

Then it follows from Theorem 2.6 that the system $\left\{e^{i \tilde{\lambda}_{n}(t)}\right\}_{n \in Z}$ forms a basis isomorphic to $\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z}$ for $L_{p(\cdot)}$. System (10) and the basis $\left\{e^{i \tilde{\lambda}_{n}(t)}\right\}_{n \in Z}$ differ by the finite number of elements. Denote by $\left\{\tilde{\vartheta}_{n}\right\}_{n \in Z}$ the system biorthogonal to this basis. Consider

$$
\begin{equation*}
e^{i \lambda_{k}(t)}=\sum_{|n| \leq n_{0}} a_{n k} e^{i \lambda_{n}(t)}+\sum_{|n|>n_{0}} a_{n k} e^{i \mu_{n}(t)}, \forall k:|k| \leq n_{0}, \tag{14}
\end{equation*}
$$

where $a_{n k}=\tilde{\vartheta}_{n}\left(e^{i \lambda_{k}(t)}\right)=\int_{-\pi}^{\pi} e^{i \lambda_{k}(t)} \overline{\vartheta_{n}(t)} d t$. Denote by $\Delta_{n_{0}}$ the following determinant

$$
\begin{equation*}
\Delta_{n_{0}}=\operatorname{det}\left(a_{i j}\right)_{i, j=-n_{0}, n_{0}} . \tag{15}
\end{equation*}
$$

It is clear that if $\Delta_{n_{0}} \neq 0$, the elements $e^{i \lambda_{k}(t)}, k=\overline{-n_{0}, n_{0}}$, in expansion (14), may be replaced by the elements $e^{i \mu_{k}(t)}, k=\overline{-n_{0}, n_{0}}$. Since the system $\left\{e^{i \tilde{\lambda}_{n}(t)}\right\}_{n \in Z}$ forms a basis for $L_{p(\cdot)}$, then f has the expansion $f=$ $\sum_{n=-\infty}^{\infty} \tilde{\vartheta}_{n}(f) e^{i \lambda_{n}(t)}, \forall f \in L_{\left.p_{(}\right)}$. Hence it follows directly that if $\Delta_{n_{0}} \neq 0$, then f has the expansion with respect to the system (10) $\forall f \in L_{\left.p_{(}\right)}$, i.e. it is complete in $L_{p(\cdot)}$. Consider the operator

$$
\tilde{F} f=\sum_{n=-\infty}^{\infty} \tilde{\vartheta}_{n}(f) e^{i \mu_{n}(t)}
$$

We have

$$
\begin{aligned}
\tilde{F} f & =\sum_{n=-\infty}^{\infty} \tilde{\vartheta}_{n}(f) e^{i \tilde{\lambda}_{n}(t)}+\sum_{n=-\infty}^{\infty} \tilde{\vartheta}_{n}(f)\left[e^{i \mu_{n}(t)}-e^{i \tilde{\lambda}_{n}(t)}\right]= \\
& =f+\sum_{n=-n_{0}}^{n_{0}} \tilde{\vartheta}_{n}(f)\left[e^{i \mu_{n}(t)}-e^{i \tilde{\lambda}_{n}(t)}\right]=(I+T) f,
\end{aligned}
$$

where $I: L_{p(\cdot)} \rightarrow L_{p(\cdot)}$ is an identity operator and T is an operator generated by the second summand above. The Fredholm property of F in $L_{p(\cdot)}$ follows from the finite dimensionality of the operator T. It is clear that $\tilde{F}\left[e^{i \lambda_{n}}(t)\right]=e^{i \mu_{n}(t)}$, $\forall n \in Z$. Then from Lemma 2.3 we get the basicity of system (10) in L_{p}. Conversely, if system (10) forms a basis for $L_{p(\cdot)}$, it follows from Lemma 2.7 that $\Delta_{n_{0}} \neq 0$. Thus we established that under the given conditions the system (10) forms a basis for $L_{p(\cdot)}$ if the determinant defined by (15) is not equal to zero. So we have just proved the following theorem:

Theorem 4.2 Let all the conditions of Theorem 3.1 with $\gamma>1$ be fulfilled and the determinant $\Delta_{n_{0}}$ be defined by expression (15). Then the system (10) forms a basis for $L_{p(\cdot)}$, if $\Delta_{n_{0}} \neq 0$.

Now consider the case when ω_{π} doesn't belong to $\left(-\frac{1}{q(\pi)}, \frac{1}{p(\pi)}\right)$. Let, for example, $\frac{1}{p(\pi)}<\omega_{\pi}<\frac{1}{p(\pi)}+1$. In this case, as it follows from Theorem 3.1, the system

$$
\begin{equation*}
\left\{e^{i \mu_{n}(t)}\right\}_{n \in Z} \bigcup\left\{e^{i \alpha(t)}\right\} \tag{16}
\end{equation*}
$$

forms a basis for $L_{p(\cdot)}$. Consider the system

$$
\begin{equation*}
\left\{e^{i \lambda_{n}(t)}\right\}_{n \in Z} \bigcup\{g(t)\} \tag{17}
\end{equation*}
$$

where $g \in L_{p(\cdot)}$. Let the conditions $(\alpha),(\beta)$ and $\gamma>\frac{1}{\tilde{p}}$ be fulfilled for system (10). Then it is easy to see that system (15) and basis (16) are \tilde{p}-close in $L_{p(\cdot)}$, where $\tilde{p}=\min \left\{p^{-} ; 2\right\}$. Consequently, the system (10) is not complete in $L_{p(\cdot)}$. The remaining cases of $\omega_{\pi}>\frac{1}{p(\pi)}$ are proved in the same way.

Consider the case when, for example, $\omega_{\pi} \in\left(-\frac{1}{q(\pi)}-1,-\frac{1}{q(\pi)}\right)$. In this case, again by virtue of Theorem 2.12, the system

$$
\begin{equation*}
\left\{e^{i \mu_{n}(t)}\right\}_{n \neq 0} \tag{18}
\end{equation*}
$$

forms a basis for $L_{p(\cdot)}$. If the conditions (α) and (β) are fulfilled, then the basis (18) and system $\left\{e^{i \lambda_{n}(t)}\right\}_{n \neq 0}$ are \tilde{p}-close in $L_{p(\cdot)}$. Consequently, the system (10) is not minimal in $L_{p(\cdot)}$. The remaining cases of $\omega_{\pi}<-\frac{1}{q(\pi)}$ can be proved similarly. As a result, we get the following final result for the basicity of system (10) for $L_{\left.p_{(}\right)}$.

Theorem 4.3 Let the asymptotic formula (11) holds with the conditions (α) and (γ) for the functions $\alpha(t)$ and $\beta_{n}(t)$. Let the quantity ω_{π} be determined by the relations (β) and let $\gamma>\frac{1}{\tilde{p}}$. Then for $\omega_{\pi}<-\frac{1}{q(\pi)}$ the system (10) is nonminimal in $L_{p(\cdot)}$; for $\omega_{\pi}>\frac{1}{p(\pi)}$ it is not complete in $L_{p(\cdot)}$. For $-\frac{1}{q(\pi)}<$ $\omega_{\pi}<\frac{1}{p(\pi)}$ the following properties of system (10) in $L_{p(\cdot)}$ are equivalent:

1) it is complete in $L_{p(\cdot)}$;
2) it is minimal in $L_{p(\cdot)}$;
3) it is ω - linearly independent in $L_{p(\cdot)}$;
4) it forms a basis isomorphic to $\left\{e^{i n t}\right\}_{n \in Z}$ for $L_{p(\cdot)}$;
5) $\Delta_{n_{0}} \neq 0$, where $\Delta_{n_{0}}$ is determined by (15).

In fact, equivalence of properties 1)-4) follows directly from Lemma 2.3. As for equivalence of properties 4) and 5), it was proved above.

References

[1] Bilalov B.T., Bases from exponents, cosines and sines being eiqen functions differential operators, Diff. Eq., 39:5, 2003, 1-5.
[2] Bilalov B.T., Basicity of some system of exponents cosines and sines, Diff. Eq., 26:1, 1990, 10-16.
[3] Bilalov B.T., Basis properties of some systems of exponents cosines and sines, Sib. Math. J., 45:2, 2004, 264-273.
[4] Bilalov B.T., On isomorphism of two bases in L_{p}, Fundament. Prikl. Math., 1:4, 1995, 1091-1094.
[5] Bilalov B.T., Guseynov Z.G., Basicity criterium of perturbed system of exponents in Lebesque space with variable summability exponent. Dokl. Math., 436, 2011, 586-589.
[6] Bilalov B.T., Guseynov Z.G., Basicity of a system of exponents with a piecewise linear phase in variable spaces, Medit. J. Math., DOI 10.1007/s00009-011-0135-7, Springer, Basel AG, 2011.
[7] Bilalov B.T., Guseynov Z.G., Bases from exponents in Lebesgue spaces of functions with variable summability exponent, Trans. of NAS Az., 27:1, 2008, 43-48.
[8] Bilalov B.T. Muradov T.R., On equivalent bases in Banach spaces, Ukr. Mat. J., 59:4, 2007, 551-554.
[9] Danilyuk I.I., Irregular Boundary Value Problems on a Plane, Moscow, Nauka, 1975.
[10] L. Diening, P. Hasto, P. Harjulehto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011.
[11] L.Diening, P.Hasto, A.Nekvinda., Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA04 Proceedings, Milovy, Acad. of Sciences of the Czech Rep., Prague, 2005, 38-52.
[12] Hochberg I.Ts., Markus A.S., On stability of the bases of Banach and Hilbert spaces., Izv. AN Mold. SSR, 5, 1962, 17-35.
[13] Kokilashvili V., Paatashvili V., On Hardy classes of analytic functions with a variable exponent, Proc. A.Razmadze Math. Inst., 142, 2006, 134137.
[14] Kovacik O., Rakosnik J., On spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Czech. Math. J., 41, 1991, 592-618.
[15] Levinson N. Gap and Density Theorems, AS Colloq. Publ., 26, Providence, RI, 1940.
[16] Moiseev E.I., Basicity of the system of exponents, cosines and sines in L_{p}, Dokl. Ak. Nauk SSSR, 275:4, 1984, 794-798.
[17] Paley R., Wiener N, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, RI, 1934.
[18] Samko S., On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16(5-6)2005, 461-482.
[19] Sedletskii A.M., Biorthogonal expansions in series of exponents on intervals of the real axis, Usp. Mat. Nauk, 37:5(227), 1982, 51-95.
[20] Sharapudinov I.I., Some problems of approximation theory in space $L^{p(x)}(E)$, nal. Math., 33:2, 2007, 135-153.
[21] Xianling F., Dun Z., On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m, p(\cdot)}(\Omega)$, J. Math. Anal. Appl., 263, 2001, 424-446.
[22] Young R. M., An Introduction to Nonharmonic Fourier series, Academic Press, New York, 1980.
[23] Zinger I., Bases in Banach spaces, I., Springer, Berlin, 1970.
Received: June, 2012

[^0]: ${ }^{1}$ This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant No EIF/GAM-1-2011-2(4)-26/03/1.

