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Basicity of a perturbed system of exponents
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Abstract

We consider a system of exponents with piecewise continuous phase

which can be a set of eigenfunctions of discontinuous differential oper-

ators. The basicity of this system in generalized Lebesgue spaces are

established under certain conditions.
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1 Introduction

Consider the following system of exponents
{

eiλn(t)
}

n∈Z
, (1)

where λn (t) has the representation λn (t) = nt−α (t) sign n, Z is the set of all
integers and α(t) is a piecewise continuous function on the segment [−π; π]. A
great number of papers beginning with classic Theorem of Paley and Wiener
[17] on the Riesz basicity in L2 and the results of Levinson [15] have been
devoted to basis properties (basicity, completeness, minimality) of system (1)
in classic Lebesgue spaces Lp ≡ Lp(−π; π), 1 ≤ p ≤ +∞, (L∞ ≡ C[−π; π])
when α(t) = αtand α ∈ R is a real parameter. Necessary and sufficient basicity
conditions in Lp, 1 < p < ∞, for a parameter α ∈ R have been obtained in
[16,19]. The most general case has been considered in [2,3].

Recently, in the light of specific problems of mechanics and mathematical
physics, there arose a great interest in studying this kind of matters in Lebesgue
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spaces Lp(·) and Sobolev spaces Wm
p(·) with variable summability index p(t).

Detailed information about these problems can be found in [10,11,14,18,21].
Solving many partial differential equations by the method of separation of vari-
ables urges the necessity to study basis properties in the spaces Lp(·) and Wm

p(·)

of the system of root functions of ordinary differential operators, generated by
these problems.

The case α (t) ≡ αt was earlier studied in [20] for α = 0 and in [5,7] for α ∈
R. The basicity inLp(·)of the system (1) when λn(t) ≡ −signn [αt + βsignt] , t ∈
[−π; π] , α, β ∈ C are complex parameters, is established in [6].

The present paper studies the basicity of system (1) and its perturbations
in generalized Lebesgue spaces Lp(·) with variable summability exponent p (·).

2 Necessary notion and facts. Basic Assump-

tions

We state some ideas from the theory of Lp(·) spaces. Let p : [−π, π] → [1,+∞)
be a Lebesgue measurable function. Denote by L0 the class of all measurable
functions on [−π, π] (with respect to Lebesgue measure). Denote

Ip (f)
def
≡
∫ π

−π
|f (t)|p(t) dt.

Let L ≡ {f ∈ L0 : Ip (f) < +∞} and p± = sup vrai
[−π,π]

p (t)±1
. Subject to the

condition 1 ≤ p− ≤ p+ < +∞, L turns into a linear space with respect
to ordinary linear operations of addition of functions and multiplication of a
function by a number. With the norm

‖f‖p(·)
def
≡ inf

{

λ > 0 : Ip

(

f

λ

)

≤ 1

}

, f ∈ L

the space L is a Banach space and we denote it by Lp(·). Assume

WLπ

def
≡ {p : p (π) = p (−π) and ∃C > 0; ∀t1, t2 ∈ [−π, π] , |t1 − t2| ≤

1

2
⇒

⇒ |p (t1)− p (t2)| ≤
C

− ln |t1 − t2|

}

.

This is a weakly Lipschitz class of functions periodic on [−π, π]. Through-
out this paper q (t) will denote the function conjugated to p (t), that is, 1

p(t)
+

1
q(t)

≡ 1. The following Holder’s generalized inequality holds:

∫ π

−π
|f (t) g (t)| dt ≤ c

(

p−; p+
)

‖f‖p(·) ‖g‖q(·) ,
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where c (p−; p+) = 1 + 1
p−

− 1
p+
. The following property is valid.

Property A.If |f (t)| ≤ |g (t)| a.e. on (−π, π), then ‖f‖p(·) ≤ ‖g‖p(·).
We’ll oftenly use this property. Also the following lemma is easily proved.

Lemma 2.1 Let p ∈ WLπ, p (t) > 0, ∀t ∈ [−π, π] and {αi}
m

1 ⊂ R (R is
a real axis). The function ω (t) =

∏m
i=1 |t− ti|

αi belongs to the space Lp(·) if
αi > − 1

p(ti)
, ∀i = 1, m; where {ti}

m

1 ⊂ [−π, π] , ti 6= tj, for i 6= j.

Detailed information about these results can be found in [10,11,14,18,21].
We’ll assume that the function α (t) satisfies the following basic assumptions:

(α) α (t)is piecewise Holder on [−π, π] and {sk} : −π = s0 < s1 < ... <

sr < sr+1 = π are its discontinuity points on(−π, π). Let {hk}
r
1 : hk =

α (sk + 0) − α (sk − 0) , k = 1, r be the jumps of the function α (t) at the

points sk and h0 =
α(−π)−α(π)

π
.

(β)

{

hk

π
−

1

p (sk)
: k = 0, r

}

⋂

Z = ∅.

Define {nk}
r

1 ⊂ Z by the following relations:

−
1

q (sk)
<

hk

π
+ nk−1 − nk <

1

p (sk)
, n0 = 0 , k = 1, r

and assume that ωπ = h0 + nr.
Let ω = {z : |z| < 1} be a unit circle on a complex plane and ∂ω be a unit

circumference. Introduce the Hardy class

H+
p(·) ≡

{

f : f analytic in ω and ‖f‖H+
p(·)

< +∞
}

,

where ‖f‖H+
p(·)

≡ sup
0<r<1

‖f (reit)‖p(·). H+
p(·) is a Banach space if 1 ≤ p− ≤

p+ < +∞. Determine the Hardy class mH
−
p(·) of functions analytic outside the

unit circle of order less than or equal to m ≥ 0 at infinity. Let f(z) be an
analytic function on C\ω̄ (ω̄ = ω ∪ ∂ω), of finite order m0 ≤ m at infinity, i.e.
f(z) = f1(z) + f2(z), where f1(z) is a polynomial of degree m0, and f2(z) is
the right part of the expansion of the function f(z) in Lorents series in the
neighborhood of infinite point. We’ll say that the function f(z) belongs to

the class mH
−
p(·), if the function ϕ(z) = f2

(

1
z̄

)

((̄·) is a complex conjugation)

belongs to the class H+
p(·).

For our investigation we need some basic concepts of the theory of close
bases, which are given as follows.

We’ll denote a Banach space as B-space, the space conjugated to X is
denoted by X∗. N is the set of all positive integers and Z+ = {0} ∪N .
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Definition 2.2 The system {xn}n∈N ⊂ X in B-space X is called ω-linearly
independent if

∑∞
n=1 anxn = 0 ⇒ an = 0, ∀n ∈ N .

The following lemma holds true.

Lemma 2.3 Let Xbe a B-space with the basis {xn}n∈N and F : X → X a
Fredholm operator. Then the following properties of the system {yn = Fxn}n∈N
in X are equivalent:

1) {yn}n∈N is complete; 2) {yn}n∈N is minimal; 3) {yn}n∈N is ω - linearly
independent; 4) {yn}n∈N is basis isomorphic to {xn}n∈N .

Definition 2.4 The systems {xn}n∈N and {yn}n∈N in B-space X with the
norm ‖·‖ are called p-close if

∑

n ‖xn − yn‖
p
< +∞.

Definition 2.5 The minimal system{xn}n∈N ⊂ X in B-space X is called
a p-system if for ∀x ∈ X : {x∗

n (x)}n∈N ∈ lp, where {x∗
n}n∈N ⊂ X∗is its conju-

gate and lpa usual space of p-absolutely summable sequences {an}n∈N normed

by
∥

∥

∥{an}n∈N

∥

∥

∥

lp
= (

∑

n |an|
p)

1
p . In the case of basicity this system will be called

a p-basis.

Detailed information about this kind of facts can be found in the mono-
graphs [22,23] and in the papers [1,8]. We also need the following theorem.

Theorem 2.6 (Krein-Milman-Rutman [20]) Let Xbe a B−space with
norm ‖·‖ and with normalized basis {xn}n∈N and {x∗

n}n∈N ⊂ X∗ be a sys-
tem biorthogonal to it. If the system {yn}n∈N ⊂ X satisfies the condition
∑∞

n=1 ‖xn − yn‖ < η−1, where η = sup
n

‖x∗
n‖, then it forms a basis for X iso-

morphic to {xn}n∈N .

To obtain our main result we’ll use the following lemma.

Lemma 2.7 Let Xbe a B-space with the basis {xn}n∈N and {x∗
n}n∈N ⊂ X∗

be a system biorthogonal to {xn}n∈N . Assume that the system{yn}n∈N ⊂ X

differs from{xn}n∈N by the finite number of elements, i.e. . Then, if ∆n0 =
det (x∗

n (yk))n,k=1,n0
= 0, the system {yn}n∈N is not minimal in X.

We’ll need the following

Theorem 2.8 Let p ∈ WLπ, p− > 1, and A±1, B±1 ∈ L∞(−π, π). If

the double system of exponents
{

A(t)eint; B(t)e−ikt
}

n∈Z+;k∈N
forms a basis

for Lp(·)(−π, π) it is isomorphic in Lp(·) to the classic system of exponents
{eint}n∈Z, and the isomorphism is given by the operator S, where

Sf = A
∞
∑

0

(

f, einx
)

eint +B
∞
∑

1

(

f, e−inx
)

e−int, (f, g) =
∫ π

−π
f(t)g(t)dt.
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The validity of this statement is proved in [4]. Using this result, the fol-
lowing theorem is easily proved.

Theorem 2.9 Let the system (1) forms a basis for Lp, 1 < p < +∞. Then
1) If 1 < p ≤ 2 and f ∈ Lp, then {fn}n∈Z ∈ lq, and the inequality

∥

∥

∥{fn}n∈Z

∥

∥

∥

lq
≤ mp ‖f‖p

is fulfilled, where mp is a constant independent of fand ‖·‖p is the ordinary
norm in Lp.

2) let p > 2 and let the sequence of numbers {an}n∈Z belong to lq. Then
∃f ∈ Lp such that fn = an , ∀n ∈ Z, and the inequality

‖f‖p ≤ Mp

∥

∥

∥{fn}n∈Z

∥

∥

∥

lq

holds, where Mp is a constant independent of {fn}n∈Z .

Consider the Riemann homogeneous problem

F+ (τ)−G (τ)F− (τ) = 0 , τ ∈ ∂ω ,

F+ ∈ H+
p(·) , F− ∈ mH

−
p(·)

(2)

The following theorem is true for it.

Theorem 2.10 Let p ∈ WLπ , p
− > 1, G(eit) = e2iα(t), where α(t) satisfies

the condition (α) and the following inequalities be fulfilled:

−
1

q (π)
<

h0

π
<

1

p (π)
;−

1

q (sk)
<

hk

π
<

1

p (sk)
, k = 1, r.

Then the general solution of Riemann homogeneous problem (2) has the form
F (z) = Z (z)Pm0 (z) , m0 ≤ m, where Z(z) is a canonical solution.

As immediate consequence of Theorem 2.10 is the following.

Corollary 2.11 Let all the conditions of theorem 2.10 be fulfilled. Then
for F−(∞) = 0, i.e. in the class H+

p(·) × −1H
−
p(·), the homogeneous problem (2)

has only a trivial solution.

Consider the Riemann inhomogeneous problem

F+(τ)−G(τ)F−(τ) = f(τ), τ ∈ ∂ω,

F+ ∈ H+
p(·), F

− ∈ mH
−
p(·),

(3)
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where f ∈ Lp(·) and G(τ) = e2iα(arg τ). Consider the Cauchy type integral

F1(z) =
Z(z)

2πi

∫

∂ω

f(τ)

Z+(τ)

dτ

τ − z
, (4)

where Z+(τ) are non-tangential boundary values of the function Z(z) on ∂ω

inside the unit circle ω.
The following theorem is valid.

Theorem 2.12 Letp ∈ WLπ, G(eit) = e2iα(t), α(t) satisfy the condition
(α) and the following inequality be fulfilled:

−
1

q (sk)
<

hk

π
<

1

p (sk)
, k = 0, r. (5)

Then the general solution of the Riemann nonhomogeneous problem (3) in the
classH+

p(·) × mH
−
p(·) (m ≥ 0) is of the form F (z) = Z(z)Pm0(z) + F1(z), where

F1(z) =
Z(z)

2πi

∫

∂ω

f(τ)

Z+(τ)

dτ

τ − z
, (6)

Z(z) is a canonical solution of the corresponding homogeneous problem.

Corollary 2.13 Let all the conditions of theorem 2.12 be fulfilled. Then,
provided F (∞) = 0, problem (3) has a unique solution F1(z) defined by (6).

3 Basicity of a double system of exponents

Consider the system (1). The following theorem is valid:

Theorem 3.1 Let p ∈ WLπ, p− > 1, and the function α(t) satisfy the
condition (α). If inequalities (5) are fulfilled, then the system of exponents (1)
forms a basis for Lp(·).

Proof. Consider the following Riemann nonhomogeneous problem

F+(τ) +G(τ)F−(τ) = eiα(arg τ)f(arg τ), τ ∈ ∂ω,

F+ ∈ H+
p(·) × −1H

−
p(·), F (∞) = 0,

(7)

where f ∈ Lp(·).
Let p ∈ WLπ and α(t) satisfy the condition (α). Suppose that inequalities

(5) are fulfilled. Then according to Corollary 2.13, problem (7) has a unique
solution of the form (6). According to the results in [20] the system {eint}n∈Z
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forms a basis for Lp(·). Denote by {gn}n∈Z a biorthogonal coefficients of the
function g ∈ Lp(·) with respect to the system {eint}n∈Z , i.e.

gn =
1

2π

∫ π

−π
g(t)e−intdt, n ∈ Z.

It is obvious that F± (eit) ∈ Lp(·), and moreover, from F ∈ H+
p(·)×−1H

−
p(·),

F (∞) = 0 it follows that F+
n = 0, ∀n > 0; F−

n = 0, n ≥ 0. Consequently, the
following expansions hold in Lp(·):

F+
(

eit
)

=
∞
∑

n=0

F+
n eint; F−

(

eit
)

=
∞
∑

n=1

F−
−ne

−int.

Taking into account these expansions in (7), we get that the function f can
be expanded as a series with respect to the system (1) in Lp(·). Let’s prove the
uniqueness of such series expansion. Let e−iα(t)∑∞

n=0 ane
int+

+eiα(t)
∑∞

n=1 bne
−int = 0 and

f(t) =
∞
∑

n=0

ane
int, g(t) =

∞
∑

n=0

bn+1e
int.

Then, we have

A(t)f(t) +B(t)g(t) = 0, t ∈ (−π, π) , (8)

where A(t) = e−iα(t), B(t) = e−i[α(t)−t]. It is obvious that

∫

∂ω
f(arg τ)τndτ =

∞
∑

k=0

ak

∫

∂ω
τn+kdτ = 0, ∀n ≥ 0. (9)

According to the results of [9], it follows from (9) and f ∈ L1(∂ω) that ∃G ∈

H+
1 : G+(τ) = f(arg τ), a.e. τ ∈ ∂ω. Assume Φ0(z) = G

(

1
z̄

)

, |z| > 1. Thus,

Φ−
0 (τ) = G+(τ), τ ∈ ∂ω, where Φ−(τ) are non-tangential boundary values

of Φ(z) on∂ω outside the unique circle. It is clear that G+, Φ−
0 ∈ Lp(·)(∂ω).

Then, from Smirnov Theorem [13] it follows that G ∈ H+
p(·) and Φ0 ∈ 0H

−
p(·). If

Φ(z) = z−1Φ0(z), it is clear that Φ ∈ −1H
−
p(·), i.e. Φ(∞) = 0. So, we have

G+
(

eit
)

=
∞
∑

n=0

ane
int; G+

(

eit
)

=
∞
∑

n=0

bn+1e
int.

Consequently,

Φ−
0

(

eit
)

= G+ (eit) =
∞
∑

n=0

bn+1e
−int, Φ−

(

eit
)

=
∞
∑

n=1

bne
−int.
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As a result, from (8) we get the following conjugation problem in the classes
H+

p(·) × −1H
−
p(·):

G+(τ) +G(τ)Φ−(τ) = 0, τ ∈ ∂ω,

(G; Φ) ∈ H+
p(·) × −1H

−
p(·).

Since all the conditions of Theorem 2.9 are fulfilled, from Corollary 2.11 we
get G(z) ≡ Φ(z) ≡ 0, i.e. an = bn+1 = 0, ∀n ≥ 0. This proves the basicity of
the system (1) in Lp(·).

4 Perturbed basis with exponents

Consider the following perturbed system of exponents
{

eiµn(t)
}

n∈Z
, (10)

where µn (t) has the following form:

µn (t) = nt− α (t) sign n+ βn (t) , n → ∞. (11)

Assume that the following condition is fulfilled:
(γ) the functions {βn} satisfy the relation

βn (t) = O

(

1

nγk

)

, t ∈ (sk, sk+1) , k = 0, r; {γk}
r
1 ⊂ (0,+∞) .

The following theorem is valid.

Theorem 4.1 Let the asymptotic formula (11) be true with functionsα (t)
and βn(t) satisfying conditions (α) and (γ). Assume that the following inequal-
ities hold:

−
1

q (π)
< ωπ <

1

p (π)
, γ >

1

p̃
,

where γ = min
k

γk , p̃ = min {p− ; 2} and the quantity ωπ is determined by

the relations (β). Then the following properties of the system (10) in Lp(·) are
equivalent:
1) it is complete;
2) it is minimal;
3) it is ω-linearly independent;
4) it forms a basis isomorphic to {eint}n∈Z .

Proof. We have

∣

∣

∣eiλn(t) − eiµn(t)
∣

∣

∣ =
∣

∣

∣eiβn(t) − 1
∣

∣

∣ =

∣

∣

∣

∣

∣

∞
∑

k=1

βk
n (t)

k!

∣

∣

∣

∣

∣

≤
∞
∑

k=1

Mn−γ

k!
= cn−γ,
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where γ = min
k

γk , and cis a constant independent of n. The last inequality

follows from the condition (γ). Consider some special cases.
Let p̃ = min {p− ; 2} and γ > 1

p̃
. We have

∑

n

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p

p(·)
≤ cp

∑

n

1

|n|γp̃
< +∞.

Suppose that all conditions of Theorem 2.10 and inequalities (5) are fulfilled.
Then system (1) forms a basis for Lp(·). By Theorem 2.8, it is isomorphic to the
classical system with exponents {eint}n∈Z in Lp(·). As a result, spaces of coeffi-

cients of the bases
{

eiλn(t)
}

n∈Z
and {eint}n∈Z are congruent. Let T :Lp(·)→Lp(·)

be a natural automorphism, i.e. T
[

eiλn(t)
]

= eint, ∀n ∈ Z. For all f ∈Lp(·)

let {fn}n∈Z be a biorthogonal coefficients of f with respect to the system
{

eiλn(t)
}

n∈Z
. Assume that g = Tf . Consequently, {fn}n∈Z is a Fourier coef-

ficients of function g with respect to the system {eint}n∈Z . it follows directly
from (11) and from condition (γ)that

∑

n∈Z

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p̃

p(·)
< +∞.

Consider the expression
∑

n

(

eiλn(t) − eiµn(t)
)

fn. We have

∑

n∈Z

∥

∥

∥

(

eiλn(t) − eiµn(t)
)

fn
∥

∥

∥

p(·)
≤
∑

n∈Z

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥ |fn| ≤

≤

(

∑

n∈Z

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p̃

p(·)

) 1
p̃
(

∑

n

|fn|
q̃

) 1
q̃

,

where 1
p̃
+ 1

q̃
= 1. By the Hausdorff-Young theorem [3] we get

(

∑

n

|fn|
q̃

) 1
q̃

≤ m1 ‖g‖p̃ ,

where m1 is a constant. From p̃ ≤ p− and the continuous embedding Lp(·)⊂Lp̃

we get
‖g‖p̃ ≤ m2 ‖g‖p(·) ≤ m2 ‖T‖ ‖f‖p(·), for some m2 > 0.

As a result we have

∥

∥

∥

∥

∥

∑

n

(

eiλn(t) − eiµn(t)
)

fn

∥

∥

∥

∥

∥

p(·)

≤
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≤ m1m2

(

∑

n

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p̃

p(·)

) 1
p̃

‖f‖p(·) . (12)

Take n0 ∈ N such that

δ = m1m2 ‖T‖





∑

|n|>n0

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p̃

p(·)





1
p̃

< 1

and assume that

ωn(t) =

{

λn(t) , |n| > n0 ,

µn(t) , |n| ≤ n0 .

Then it is clear that
∥

∥

∥

∥

∥

∑

n

(

eiωn(t) − eiλn(t)
)

fn

∥

∥

∥

∥

∥

p(·)

≤ δ ‖f‖p(·) . (13)

It follows directly from (12) that the expression
∑

n

(

eiωn(t) − eiλn(t)
)

fn

represents a function from Lp(·), denote it by T0f . Taking into account (13),
we get ‖T0‖ ≤ δ < 1. Thus, the operator F = I+T0 is invertible and it is easy

to see that F
[

eiλn(t)
]

= eiωnt, ∀n ∈ Z. Consequently, the system
{

eiωn(t)
}

n∈Z

forms a basis isomorphic to
{

eiλn(t)
}

n∈Z
for Lp(·). The systems

{

eiµn(t)
}

n∈Z
and

{

eiωn(t)
}

n∈Z
differ by the finite number of elements. The further evidence

follows directly from Lemma 2.1. Thus, the theorem is proved.
Now we consider the case when γ > 1. In this case it is obvious that it

holds
∑∞

n=−∞ ‖eiλn(t) − eiµn(t)‖p(·) < +∞. Let all the conditions of Theorem

2.12 be fulfilled. Then the system
{

eiλn(t)
}

n∈Z
forms a basis for Lp(·). Denote

by {ϑn}n∈Z ⊂ Lq(·) the system biorthogonal to it. Assume ϑ = sup
n

‖ϑn‖q(·). It

is clear that ∃n0 ∈ N :

∑

|n|≥n0+1

∥

∥

∥eiλn(t) − eiµn(t)
∥

∥

∥

p(·)
< ϑ−1.

Consider the following functions:

λ̃n (t) =

{

µn (t) , |n| > n0 ,

λn (t) , |n| ≤ n0 .

Thus,
∞
∑

n=−∞

∥

∥

∥eiλ̃n(t) − eiµn(t)
∥

∥

∥

p(·)
< ϑ−1.
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Then it follows from Theorem 2.6 that the system
{

eiλ̃n(t)
}

n∈Z
forms a basis iso-

morphic to
{

eiλn(t)
}

n∈Z
for Lp(·). System (10) and the basis

{

eiλ̃n(t)
}

n∈Z
differ

by the finite number of elements. Denote by
{

ϑ̃n

}

n∈Z
the system biorthogonal

to this basis. Consider

eiλk(t) =
∑

|n|≤n0

anke
iλn(t) +

∑

|n|>n0

anke
iµn(t), ∀k : |k| ≤ n0, (14)

where ank = ϑ̃n

(

eiλk(t)
)

=
∫ π
−π e

iλk(t)ϑ̃n (t)dt. Denote by ∆n0 the following
determinant

∆n0 = det (aij)i,j=−n0,n0
. (15)

It is clear that if ∆n0 6= 0, the elements eiλk(t), k = −n0, n0, in expan-
sion (14), may be replaced by the elements eiµk(t), k = −n0, n0. Since the

system
{

eiλ̃n(t)
}

n∈Z
forms a basis for Lp(·), then f has the expansion f =

∑∞
n=−∞ ϑ̃n(f)e

iλ̃n(t), ∀f ∈ Lp(·). Hence it follows directly that if ∆n0 6= 0,
then f has the expansion with respect to the system (10) ∀f ∈ Lp(·), i.e. it is
complete in Lp(·). Consider the operator

F̃ f =
∞
∑

n=−∞

ϑ̃n (f) e
iµn(t).

We have

F̃ f =
∞
∑

n=−∞

ϑ̃n (f) e
iλ̃n(t) +

∞
∑

n=−∞

ϑ̃n (f)
[

eiµn(t) − eiλ̃n(t)
]

=

= f +
n0
∑

n=−n0

ϑ̃n (f)
[

eiµn(t) − eiλ̃n(t)
]

= (I + T ) f,

where I : Lp(·) → Lp(·) is an identity operator and T is an operator generated by
the second summand above. The Fredholm property of F in Lp(·) follows from

the finite dimensionality of the operator T . It is clear that F̃
[

eiλ̃n (t)
]

= eiµn(t),

∀n ∈ Z. Then from Lemma 2.3 we get the basicity of system (10) in Lp.
Conversely, if system (10) forms a basis for Lp(·), it follows from Lemma 2.7
that ∆n0 6= 0 . Thus we established that under the given conditions the system
(10) forms a basis for Lp(·) if the determinant defined by (15) is not equal to
zero. So we have just proved the following theorem:

Theorem 4.2 Let all the conditions of Theorem 3.1 with γ > 1 be fulfilled
and the determinant ∆n0 be defined by expression (15). Then the system (10)
forms a basis for Lp(·), if ∆n0 6= 0.
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Now consider the case when ωπ doesn’t belong to
(

− 1
q(π)

, 1
p(π)

)

. Let, for

example, 1
p(π)

< ωπ < 1
p(π)

+ 1. In this case, as it follows from Theorem 3.1,
the system

{

eiµn(t)
}

n∈Z

⋃

{

eiα(t)
}

(16)

forms a basis for Lp(·). Consider the system

{

eiλn(t)
}

n∈Z

⋃

{g (t)} , (17)

where g ∈ Lp(·). Let the conditions (α), (β) and γ > 1
p̃
be fulfilled for system

(10). Then it is easy to see that system (15) and basis (16) are p̃-close in Lp(·),
where p̃ = min {p−; 2}. Consequently, the system (10) is not complete in Lp(·).
The remaining cases of ωπ > 1

p(π)
are proved in the same way.

Consider the case when , for example, ωπ ∈
(

− 1
q(π)

− 1,− 1
q(π)

)

. In this
case, again by virtue of Theorem 2.12, the system

{

eiµn(t)
}

n 6=0
, (18)

forms a basis for Lp(·). If the conditions (α) and (β) are fulfilled, then the basis

(18) and system
{

eiλn(t)
}

n 6=0
are p̃-close in Lp(·). Consequently, the system

(10) is not minimal in Lp(·). The remaining cases of ωπ < − 1
q(π)

can be proved
similarly. As a result, we get the following final result for the basicity of system
(10) for Lp(·).

Theorem 4.3 Let the asymptotic formula (11) holds with the conditions
(α) and (γ) for the functions α (t) and βn(t). Let the quantity ωπ be determined
by the relations (β) and let γ > 1

p̃
. Then for ωπ < − 1

q(π)
the system (10) is

nonminimal in Lp(·) ; for ωπ > 1
p(π)

it is not complete in Lp(·) . For − 1
q(π)

<

ωπ < 1
p(π)

the following properties of system (10) in Lp(·) are equivalent:

1) it is complete in Lp(·);
2) it is minimal in Lp(·);
3) it is ω− linearly independent in Lp(·);
4) it forms a basis isomorphic to {eint}n∈Z for Lp(·);
5) ∆n0 6= 0, where ∆n0is determined by (15).

In fact, equivalence of properties 1)-4) follows directly from Lemma 2.3.
As for equivalence of properties 4) and 5), it was proved above.
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