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Abstract

The purpose of this work is to give an another generalization of the
Laguerre polynomials in the context of d-orthogonality by a generat-
ing function of a certain form. We derive the d-dimensional functional
vector for which the d-orthogonality holds. Some properties of the ob-
tained polynomials are determined: expilicit representation, relation
with a known polynomial, a recurrence relation of order-(d + 1) and a
differential equation of order-(d + 1).
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1 Introduction

Lately, there has been an accelerating interest in extensions of the notion of
orthogonal polynomials. One of them is the multiple orthogonality [1 — 4].
This notion has many applications in various fields of mathematics as approx-
imation theory, spectral theory of operators and special functions theory. A
subclass of multiple orthogonal polynomials known as d-orthogonal polynomi-
als, introduced by Van Iseghem [23] and Maroni [20].

Let P be the linear space of polynomials with complex coefficients and
let P’ be its algebraic dual. A polynomial sequence {P.}, >0 in P is called a
polynomial set (PS for short) if and only if deg P, = n for all non-negative
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integer n. We denote by (u, f) the effect of the linear functional v € P’ on
the polynomial f € P. Let {P.},-, be a PS in P. The corresponding dual
sequence (uy),,, is defined by

(Uny Pr) = O, n,m=20,1, ...
Onm being the Kronecker symbol.

Definition 1.1 (Van Iseghem [23] and Maroni [20]) Let d be a positive
integer and let {P,}, <, be a PSinP. {P,}, <, is called a d-orthogonal polyno-
mial set (d-OPS, for short) with respect to the d-dimensional functional vector
' =" (Ty, Ty, ...,Ty_1) if it satisfies the following orthogonality relations:

Tk, PPy =0, m>nd+k, neN={0,1,2,...}, ]
<Fk7 PnPnd+k> % 07 nc N7 ( )

for each integer k belonging to {0,1,...,d — 1}.
For d = 1, we recover the well-known notion of orthogonality.

Theorem 1.2 (Maroni [20])A PS {P,}, -, is a d-OPS if and only if it
satisfies a (d + 1)-order recurrence relation of the type

d+1
xP, (x) = Z aga (n) Po_grr (), n e N, (2)

with the regularity conditions agi1.4(n)agq(n) # 0, n > d, and under the
convention P_, =0, n > 1.

For the particular case d = 1, this theorem is reduced to the so-called
Favard Theorem [16].

The d-orthogonality notion seems to appear in various domains of mathema-
tics. For instance, there is a closed relationship between 2-orthogonality and
the birth and the death process [26]. Furthermore, Vinet and Zhedanov [24]
showed that there exists a connection with application of d-orthogonal polyno-
mials and nonlinear automorphisms of the Weyl algebra. Most of the known
examples of d-OPSs were introduced by solving characterization problems
which consist to find all d-OPSs satisfying a fixed property [6 — 11|, [13 — 14],
18 — 19], [25].

In the literature, the pair of Konhauser polynomials Z¢ (z; k) and Y,* (x; k)
(k € Z*) discovered by Joseph E. D. Konhauser [17] have studied intensively.
These polynomials were the first examples of biorthogonal polynomials. In the
context of d-orthogonality, Ben Cheikh and Douak [7] showed that the polyno-
mial set {Z,‘j (dxl/ . d) }n>0 is d-orthogonal. Our inspiration is the generating
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functions of Y,* (z; k) polynomials given in [12]. By taking k = é, we obtain a
family of polynomials by means of following generating functions

Gala,t) = (1—t)_(a+1)dexp{—x {(1-0”-1”

oo 4
= S P (wsd) = <1, (3)
n:
n=0

where d is a positive integer. Note that with choosing k& = é, PS {P}f‘) (. d)}
n>0

is not related with the Y (z; k) polynomials, except the case d = 1 and ob-
viously k£ = 1 which gives the Laguerre polynomials for sure, and the method
summarizing at the beginning of following section is applicable for these poly-
nomials.

The purpose of the paper is to investigate the d-orthogonality property of
the PS {P,Sa) (4 d)} - generated by (3). Also, we explicitly express the corre-
sponding d—dimensigﬁal functional vector ensuring the d-orthogonality of these
polynomials. In the last section, some properties of the polynomials P,ga) (x;d)
which generalize the Laguerre polynomials in a natural way are obtained: ex-
plicit representation, a relation with a known polynomial, recurrence relation
of order-(d + 1) and (d + 1)-order differential equation satisfied by each poly-
nomials.

2 d-Orthogonality

In this section, for achieving our main theorem, we need following definitions
and results.

Lemma 2.1 (Freeman [15])Let F (x,t) = ) P, (x)e, (t) where {P,},~, is
n=0 N
a polynomial set in P and {e,},~, is a sequence in C[t]; e, being of order n.
Then for every L := L, € A (resp. M = M, € \/(1)), there exists a unique
L:=1,evED (resp. M := M, € /\(_1)> such that

L,F (,t) = L,F (z,t) (resp. MF (z,t) = MIF(x,t)> ,

where AV (resp. A7V ) is the set of operators acting on formal power series that
increase (resp. decrease) the degree of every polynomial by one and V™ (resp.
V=) is the set of operators acting on formal power series that increase (resp.
decrease) the order of every formal power series by one.

Definition 2.2 The operator L (resp. M) is called the transform operator
of L (resp. M) corresponding to the generating function F (x,t).
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In [10], Ben Cheikh and Zaghouani investigated the following special case
en (t) = — L,=X and M, =T,
n

where X (resp. T') is the multiplication operator by = (resp. the multiplication

operator by ¢). For this case, the generating function G (z,t) = 3 P, (z) %
n=0

~

is the eigenfunction of the operator X := X, (resp. T := T, ) associated with
the eigenvalue = (resp. t)

XG (x,t) = 2G (z,t) , TG (z,t) =tG (x,1). (4)
Definition 2.3 The operator T, is called the lowering operator Of{P"}nZO‘
Also, in view of these results, they gave the following useful theorem.

Theorem 2.4 (Ben Cheikh and Zaghouani [10]) Let {P,}, -, be a PS gen-
erated by

G (2,t) = A(t) Gy (z,1) = ZP (5)

where Gy (0,t) = 1. Let X and o := T, respectively, be the transform operator
of X and T, the multiplication operator by x and the multiplication operator
by t according to the generating function G (x,t). Then

(i) The following assertions are equivalent:

(a) {P,},sq s a d-OPS.

(b) X eviy.

(it) If {P.}, ¢ is a d-OPS, the d-dimensional functional vector

U = (UOa ULy -y ud—l)

for which the d-orthogonality holds is given by

1[ of _ _
<ui’f>_5lA(O)(f)(x>L:o_z'!A(a)f(O)7 et fe%

where A (t) = Y ait* is a power series and Vi (r > 2) is the set of operators
k=0

7€ VD such that there exist r complex sequences (b,(qm)> ,m=0,1,...,r—
n>0

5 £ 0 for all non-negative integer n,

1, satisfying the condition S

r—1

r—1
T(E") =Y WMl =1 and 7 (1) =Y b

m=0
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Recall the following corollary from [5],

Lemma 2.5 Let
= Z apt®  ag # 0, C(t)= Z ™™ cg #0,
k=0 k=0

be two power series and C* (t) is the inverse of C (t) such that

C(C () =C"(C1) =t (7)

where C* (t) = Y. ct*t1, then the lowering operator o := T, of the polynomial
k=0
set generated by

A(t)exp (zC (¢ Z P, (z) —

15 given by
oc=C"(D), D:%. (8)

Now, we can state our main theorem.

Theorem 2.6 The PS {P(a (. d)} oo generated by (3), is d-orthogonal

with respect to the d-dimensional functional vector U =" (ug, uy, ..., uq—1) given
by

1 r .
g, f) = = Yax®Taie *dr, 1=0,1,....,d—1,
war f) =5 “T (a+5 +1 /f

= 0

~

where f € P and o ¢ {—1,-2,...}.
Proof Taking the derivative of the equality of
Ga(w,t) = (1 — 1)@ exp {—x [(1 ) 1] }
with respect to t, we get
[(a T (1=t —dt (1™ Dt] Gul(w,t) = 2Gy (z,1) .

From Lemma 2.1 and (4), we obtain

X;=(a+1)Q=0)"—d (1 -t)"" D,
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According to Theorem 2.4 X, € \/5;12), this means that {P,ga) (.;d)} is
n>0

d-orthogonal.
Taking into account that (6), (7) and (8), we have for all polynomials f € P

0.2'

(1) = 5 | 5777 @)

where A (1) = (1 —t)"“™¥ and ¢ = 1 — (1 — D,)""*. It follows that if and
only if a ¢ {—1,-2,...}

z=0

(ui f) = <) (=1)

where («); denotes the Pochhammer’s symbol defined by
(@)g=1, (a);=()(a+1)..(a+j—1), j=1,2,3,...
Hence, we get the desired result.

Remark 2.7 For the cases d =1 and o > —1, we note that we again meet
the orthogonality of the Laguerre polynomials {n!Lg}‘) (:L’)} with respect to
n>0

the following linear functional from [21]
(0, ) = =t 7f<> "
Uo, _F(a+1) Tr)x e “aw.

0

In view of Remark 2.7, we obtain an another generalization of the Laguerre
polynomials in the context of d-orthogonality notion different from ones given
in [7] and [10].
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3 Some Properties of P\ (z:d)

The PS {P,ga) (;; d)} , generated by (3), has the following explicit represen-
n>0
tation -

n T

P (2;d) = %Z(—1)8<2)((a+s+1)d)n, ag¢{-1,-2,..}. (9

From (3), it is easily to verify the equality (9) with the help of usual serial
expansions.

In [22], Srivastava and Singhal introduced the classes of polynomials defined
by the generalized Rodrigues’ formula

1 , r
G (x,r,p, k) = —‘x_o‘_k"epx 0" (z%e ") (10)
n!

and also gave explicit form for these polynomials

G (2,7, p k) = zn: (W!)m : (—1)° (T) (O‘Z”)n (11)

n! m
m=0 J

where «, r, p and k are unrestricted in general, § = z**'D and D = £.

dx
Comparing (9) with (11), we obtain the below relation
P (z;d) = d"nlG™ (2,1,1,d7"), a¢{-1,-2,..}, d=12,.. (12)

From the relation (12), we can deduce that the special case of the Srivastava-
Singhal polynomials G\ (z,r,p, k), given by (11), is also d-orthogonal. By
using the relation (12), we derive the next theorem.

Theorem 3.1 The PS {P,Sa) (; d)} satisfies the following recurrence

n>0
relations

P (:d) = daDP® (z;d) + [(a+1)d+n — dz] P (z;d)  (13)

DP (z;d) = P (z;d) — PtV (z;d) (14)
P (x:d) = [(a+1)d+n] P (z;d) — dePeY (a;d) (15)

where D = di.
XL

Proof In view of the relation (12), we obtain the recurrence relations (13),
(14), and (15) from [22].

Remark 3.2 The recurrence relations (13)-(15) return to the recurrence
relations satisfied by Laguerre polynomials when d = 1.
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Next, we give a (d + 1)-order recurrence relation satisfied by the PS {P,ga) (. d)} .
n>0

Theorem 3.3 The PS {P,E“) (;; d)} oo generated by (3), satisfies a (d+ 1)-

n

order recurrence relation of the form

d+1

P (2;d) = Zakd P, (x;d) (16)
where
ara (n) = (=1)*1 {m L) (k ¢ 1) (k42 o+ (dz 1) (n—k+ 1)4 |

Proof The application of the operator D; to each member of (3) and then
multiplication of both sides with (1 — )™ gives

n

(a+1)d(1—8)") P (x;d) i xdz%P,(f‘) (2:d) —

n=0
o} N m
= (1=t P (xa) - (17)
n=0 ’

By using binomial expansion and shifting indices, (17) leads to

Z a+1) <) —1)k(n—k‘—|—1)kP,§f)k(:B;d)g

3
o

Z ;(dH) (1) (n =k +1), Py (23 d)%.

By comparing the coefficients of %n!, we obtain

2P\ (z;d)

]~

@+ 1) () D (a4 1), P2 (@i

Eol
o

IS9
+

Ul

0 (d‘]‘; 1) (=1)" (n— k + 1), Py, (z:). (18)

B
Il
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After some computations, (18) becomes

2P (z; d)
- %(_1)’“—1 {(a—kl) (kfl) (n—k+2)k_1+§<d:;1) (n_k+1)k]
izlié‘f)kﬂ (2; d)

= Y ara(n) P (a3d)
k=0

which finishes the proof.

Remark 3.4 [t is worthy to note that from (16), changing k by —k+d+1,
the PS {P,ga) (. d)} satisfies a (d + 1)-order recurrence relation of the type
n>0

given by (2). Notice that ay 4 (n) satisfies the reqularity conditions
Ag+1,4 (n) apa(n) #0, n>d

with
1
apq(n) = — pi

Ggr1q(n) = (—l)d{(a+1+é(n—d)) (n—d+1)d]

under the restriction o ¢ {—1,-2,...}.

Remark 3.5 For d = 1, the recurrence relation obtained in Theorem 3.3
reduces a well-known three-term recurrence relation for the Laguerre polyno-

mials {L&{”) (7) }

n>0

« —1- —1 a
L) (z) = (2+u) L@ () — <1+ a )L,&Jl (z).

n+1
Finally, we give a (d + 1)-order differential equation satisfied by the PS

{Pfga) (.;d)}

Theorem 3.6 The PS {Péa) (. d)} , generated by (3), satisfies a (d + 1)-
n>0

n>0

order differential equation of the type
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[(5-@1‘[(5—%%%(;’—1))

Jj=1

d
+xH<5—x+a+1+é(n+j—1)) P9 (z;d) =0 (19)

where § = xdi.
X

Proof According to the relation (12), we can obtain the differential equation
(19) from [22, Eq. (5.6)].

Remark 3.7 Taking d = 1 in the differential equation (19) gives well-
known differential equation satisfied by the Laguerre polynomials of the type

zy’ (2) + (a+1-a)y (2) +ny(z) =0, y (@) =LY (2).
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