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Abstract

The purpose of this work is to give an another generalization of the
Laguerre polynomials in the context of d-orthogonality by a generat-
ing function of a certain form. We derive the d-dimensional functional
vector for which the d-orthogonality holds. Some properties of the ob-
tained polynomials are determined: expilicit representation, relation
with a known polynomial, a recurrence relation of order-(d+ 1) and a
differential equation of order-(d+ 1).
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1 Introduction

Lately, there has been an accelerating interest in extensions of the notion of
orthogonal polynomials. One of them is the multiple orthogonality [1− 4].
This notion has many applications in various fields of mathematics as approx-
imation theory, spectral theory of operators and special functions theory. A
subclass of multiple orthogonal polynomials known as d-orthogonal polynomi-
als, introduced by Van Iseghem [23] and Maroni [20].

Let P be the linear space of polynomials with complex coefficients and
let P

′

be its algebraic dual. A polynomial sequence {Pn}n≥0 in P is called a
polynomial set (PS for short) if and only if degPn = n for all non-negative
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integer n. We denote by 〈u, f〉 the effect of the linear functional u ∈ P
′

on
the polynomial f ∈ P. Let {Pn}n≥0 be a PS in P. The corresponding dual
sequence (un)n≥0 is defined by

〈un, Pm〉 = δn,m, n,m = 0, 1, ...

δn,m being the Kronecker symbol.

Definition 1.1 (Van Iseghem [23] and Maroni [20]) Let d be a positive
integer and let {Pn}n≥0 be a PS in P. {Pn}n≥0 is called a d-orthogonal polyno-
mial set (d-OPS, for short) with respect to the d-dimensional functional vector
Γ =t (Γ0,Γ1, ...,Γd−1) if it satisfies the following orthogonality relations:

{

〈Γk, PmPn〉 = 0, m > nd+ k, n ∈ N = {0, 1, 2, ...} ,
〈Γk, PnPnd+k〉 6= 0, n ∈ N,

(1)

for each integer k belonging to {0, 1, ..., d− 1}.

For d = 1, we recover the well-known notion of orthogonality.

Theorem 1.2 (Maroni [20])A PS {Pn}n≥0 is a d-OPS if and only if it
satisfies a (d+ 1)-order recurrence relation of the type

xPn (x) =

d+1
∑

k=0

ak,d (n)Pn−d+k (x) , n ∈ N, (2)

with the regularity conditions ad+1,d (n) a0,d (n) 6= 0, n ≥ d, and under the
convention P−n = 0, n ≥ 1.

For the particular case d = 1, this theorem is reduced to the so-called
Favard Theorem [16].

The d-orthogonality notion seems to appear in various domains of mathema-
tics. For instance, there is a closed relationship between 2-orthogonality and
the birth and the death process [26]. Furthermore, Vinet and Zhedanov [24]
showed that there exists a connection with application of d-orthogonal polyno-
mials and nonlinear automorphisms of the Weyl algebra. Most of the known
examples of d-OPSs were introduced by solving characterization problems
which consist to find all d-OPSs satisfying a fixed property [6− 11], [13− 14],
[18− 19], [25].

In the literature, the pair of Konhauser polynomials Zα
n (x; k) and Y α

n (x; k)
(k ∈ Z+) discovered by Joseph E. D. Konhauser [17] have studied intensively.
These polynomials were the first examples of biorthogonal polynomials. In the
context of d-orthogonality, Ben Cheikh and Douak [7] showed that the polyno-
mial set

{

Zα
n

(

dx1/d; d
)}

n≥0
is d-orthogonal. Our inspiration is the generating
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functions of Y α
n (x; k) polynomials given in [12]. By taking k = 1

d
, we obtain a

family of polynomials by means of following generating functions

Gd (x, t) = (1− t)−(α+1)d exp
{

−x
[

(1− t)−d − 1
]}

=
∞
∑

n=0

P (α)
n (x; d)

tn

n!
, |t| < 1, (3)

where d is a positive integer. Note that with choosing k = 1
d
, PS

{

P
(α)
n (.; d)

}

n≥0

is not related with the Y α
n (x; k) polynomials, except the case d = 1 and ob-

viously k = 1 which gives the Laguerre polynomials for sure, and the method
summarizing at the beginning of following section is applicable for these poly-
nomials.

The purpose of the paper is to investigate the d-orthogonality property of

the PS
{

P
(α)
n (.; d)

}

n≥0
generated by (3). Also, we explicitly express the corre-

sponding d-dimensional functional vector ensuring the d-orthogonality of these
polynomials. In the last section, some properties of the polynomials P

(α)
n (x; d)

which generalize the Laguerre polynomials in a natural way are obtained: ex-
plicit representation, a relation with a known polynomial, recurrence relation
of order-(d+ 1) and (d+ 1)-order differential equation satisfied by each poly-
nomials.

2 d-Orthogonality

In this section, for achieving our main theorem, we need following definitions
and results.

Lemma 2.1 (Freeman [15])Let F (x, t) =
∞
∑

n=0

Pn (x) en (t) where {Pn}n≥0 is

a polynomial set in P and {en}n≥0 is a sequence in C [t]; en being of order n.

Then for every L := Lx ∈ ∧(1)
(

resp. M := Mt ∈ ∨(1)
)

, there exists a unique

L̂ := L̂t ∈ ∨(−1)
(

resp. M̂ := M̂x ∈ ∧(−1)
)

such that

LxF (x, t) = L̂tF (x, t)
(

resp. MtF (x, t) = M̂xF (x, t)
)

,

where ∧(1)(resp. ∧(−1)) is the set of operators acting on formal power series that
increase (resp. decrease) the degree of every polynomial by one and ∨(1)(resp.
∨(−1)) is the set of operators acting on formal power series that increase (resp.
decrease) the order of every formal power series by one.

Definition 2.2 The operator L̂ (resp. M̂) is called the transform operator
of L (resp. M) corresponding to the generating function F (x, t).
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In [10], Ben Cheikh and Zaghouani investigated the following special case

en (t) =
tn

n!
, Lx = X and Mt = T ,

where X (resp. T ) is the multiplication operator by x (resp. the multiplication

operator by t). For this case, the generating function G (x, t) =
∞
∑

n=0

Pn (x)
tn

n!

is the eigenfunction of the operator X̂ := X̂t (resp. T̂ := T̂x) associated with
the eigenvalue x (resp. t)

X̂tG (x, t) = xG (x, t) , T̂xG (x, t) = tG (x, t) . (4)

Definition 2.3 The operator T̂x is called the lowering operator of {Pn}n≥0.

Also, in view of these results, they gave the following useful theorem.

Theorem 2.4 (Ben Cheikh and Zaghouani [10]) Let {Pn}n≥0 be a PS gen-
erated by

G (x, t) = A (t)G0 (x, t) =

∞
∑

n=0

Pn (x)
tn

n!
, (5)

where G0 (0, t) = 1. Let X̂ and σ := T̂ , respectively, be the transform operator
of X and T , the multiplication operator by x and the multiplication operator
by t according to the generating function G (x, t). Then
(i) The following assertions are equivalent:
(a) {Pn}n≥0 is a d-OPS.

(b) X̂ ∈ ∨
(−1)
d+2 .

(ii) If {Pn}n≥0 is a d-OPS, the d-dimensional functional vector

U =t (u0, u1, ..., ud−1)

for which the d-orthogonality holds is given by

〈ui, f〉 =
1

i!

[

σi

A (σ)
(f) (x)

]

x=0

=
σi

i!A (σ)
f (0) , i = 0, 1, ..., d− 1, f ∈ P,

(6)

where A (t) =
∞
∑

k=0

akt
k is a power series and ∨

(−1)
r (r ≥ 2) is the set of operators

τ ∈ ∨(−1) such that there exist r complex sequences
(

b
(m)
n

)

n≥0
, m = 0, 1, ..., r−

1, satisfying the condition b
(0)
n b

(r−1)
n 6= 0 for all non-negative integer n,

τ (tn) =
r−1
∑

m=0

b(m)
n tn+m−1, n ≥ 1 and τ (1) =

r−1
∑

m=1

b
(m)
m−1t

m−1.



On a different kind of d-orthogonal polynomials 565

Recall the following corollary from [5],

Lemma 2.5 Let

A (t) =

∞
∑

k=0

akt
k a0 6= 0, C (t) =

∞
∑

k=0

ckt
k+1 c0 6= 0,

be two power series and C∗ (t) is the inverse of C (t) such that

C (C∗ (t)) = C∗ (C (t)) = t (7)

where C∗ (t) =
∞
∑

k=0

c∗kt
k+1, then the lowering operator σ := T̂x of the polynomial

set generated by

A (t) exp (xC (t)) =
∞
∑

n=0

Pn (x)
tn

n!

is given by

σ = C∗ (D) , D =
d

dx
. (8)

Now, we can state our main theorem.

Theorem 2.6 The PS
{

P
(α)
n (.; d)

}

n≥0
, generated by (3), is d-orthogonal

with respect to the d-dimensional functional vector U =t (u0, u1, ..., ud−1) given
by

〈ui, f〉 =
1

i!

i
∑

r=0

(−1)r
(

i
r

)

Γ
(

α + r
d
+ 1
)

∞
∫

0

f (x) xα+ r

d e−xdx, i = 0, 1, ..., d− 1,

where f ∈ P and α /∈ {−1,−2, ...}.

Proof Taking the derivative of the equality of

Gd (x, t) = (1− t)−(α+1)d exp
{

−x
[

(1− t)−d − 1
]}

with respect to t, we get

[

(α + 1) (1− t)d − d−1 (1− t)d+1Dt

]

Gd (x, t) = xGd (x, t) .

From Lemma 2.1 and (4), we obtain

X̂t = (α+ 1) (1− t)d − d−1 (1− t)d+1Dt.



566 S. Varma and F. Taşdelen

According to Theorem 2.4 X̂t ∈ ∨
(−1)
d+2 , this means that

{

P
(α)
n (.; d)

}

n≥0
is

d-orthogonal.
Taking into account that (6), (7) and (8), we have for all polynomials f ∈ P

〈ui, f〉 =
1

i!

[

σi

A (σ)
f (x)

]

x=0

where A (t) = (1− t)−(α+1)d and σ = 1 − (1−Dx)
−1/d. It follows that if and

only if α /∈ {−1,−2, ...}

〈ui, f〉 =
1

i!

i
∑

r=0

(−1)r
(

i

r

)

[

(1−Dx)
−(α+ r

d
+1) (f) (x)

]

x=0

=
1

i!

i
∑

r=0

(−1)r
(

i

r

) ∞
∑

j=0

(

α + r
d
+ 1
)

j

j!
f (j) (0)

=
1

i!

i
∑

r=0

(−1)r
(

i
r

)

Γ
(

α+ r
d
+ 1
)

∞
∑

j=0

Γ
(

α+ j + r
d
+ 1
)

j!
f (j) (0)

=
1

i!

i
∑

r=0

(−1)r
(

i
r

)

Γ
(

α+ r
d
+ 1
)

∞
∫

0

(

∞
∑

j=0

f (j) (0)

j!
xj

)

xα+ r

d e−xdx

=
1

i!

i
∑

r=0

(−1)r
(

i
r

)

Γ
(

α+ r
d
+ 1
)

∞
∫

0

f (x) xα+ r

d e−xdx

where (α)j denotes the Pochhammer’s symbol defined by

(α)0 = 1, (α)j = (α) (α + 1) ... (α + j − 1) , j = 1, 2, 3, ....

Hence, we get the desired result.

Remark 2.7 For the cases d = 1 and α > −1, we note that we again meet

the orthogonality of the Laguerre polynomials
{

n!L
(α)
n (x)

}

n≥0
with respect to

the following linear functional from [21]

〈u0, f〉 =
1

Γ (α + 1)

∞
∫

0

f (x) xαe−xdx.

In view of Remark 2.7, we obtain an another generalization of the Laguerre
polynomials in the context of d-orthogonality notion different from ones given
in [7] and [10].
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3 Some Properties of P
(α)
n (x; d)

The PS
{

P
(α)
n (.; d)

}

n≥0
, generated by (3), has the following explicit represen-

tation

P (α)
n (x; d) =

n
∑

r=0

xr

r!

r
∑

s=0

(−1)s
(

r

s

)

((α + s+ 1) d)n , α /∈ {−1,−2, ...} . (9)

From (3), it is easily to verify the equality (9) with the help of usual serial
expansions.

In [22], Srivastava and Singhal introduced the classes of polynomials defined
by the generalized Rodrigues’ formula

G(α)
n (x, r, p, k) =

1

n!
x−α−knepx

r

θn
(

xαe−pxr)

(10)

and also gave explicit form for these polynomials

G(α)
n (x, r, p, k) =

kn

n!

n
∑

m=0

(pxr)m

m!

m
∑

j=0

(−1)j
(

m

j

)(

α + rj

k

)

n

(11)

where α, r, p and k are unrestricted in general, θ = xk+1D and D = d
dx
.

Comparing (9) with (11), we obtain the below relation

P (α)
n (x; d) = dnn!G(α+1)

n

(

x, 1, 1, d−1
)

, α /∈ {−1,−2, ...} , d = 1, 2, .... (12)

From the relation (12), we can deduce that the special case of the Srivastava-

Singhal polynomials G
(α)
n (x, r, p, k), given by (11), is also d-orthogonal. By

using the relation (12), we derive the next theorem.

Theorem 3.1 The PS
{

P
(α)
n (x; d)

}

n≥0
satisfies the following recurrence

relations

P
(α)
n+1 (x; d) = dxDP (α)

n (x; d) + [(α + 1) d+ n− dx]P (α)
n (x; d) (13)

DP (α)
n (x; d) = P (α)

n (x; d)− P (α+1)
n (x; d) (14)

P
(α)
n+1 (x; d) = [(α + 1) d+ n]P (α)

n (x; d)− dxP (α+1)
n (x; d) (15)

where D = d
dx
.

Proof In view of the relation (12), we obtain the recurrence relations (13),
(14), and (15) from [22].

Remark 3.2 The recurrence relations (13)-(15) return to the recurrence
relations satisfied by Laguerre polynomials when d = 1.
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Next, we give a (d+ 1)-order recurrence relation satisfied by the PS
{

P
(α)
n (.; d)

}

n≥0
.

Theorem 3.3 The PS
{

P
(α)
n (.; d)

}

n≥0
, generated by (3), satisfies a (d+ 1)-

order recurrence relation of the form

xP (α)
n (x; d) =

d+1
∑

k=0

ak,d (n)P
(α)
n−k+1 (x; d) (16)

where

ak,d (n) = (−1)k−1

[

(α + 1)

(

d

k − 1

)

(n− k + 2)k−1 +
1

d

(

d+ 1

k

)

(n− k + 1)k

]

.

Proof The application of the operator Dt to each member of (3) and then
multiplication of both sides with (1− t)d+1 gives

(α + 1) d (1− t)d
∞
∑

n=0

P (α)
n (x; d)

tn

n!
− xd

∞
∑

n=0

P (α)
n (x; d)

tn

n!

= (1− t)d+1
∞
∑

n=0

P
(α)
n+1 (x; d)

tn

n!
. (17)

By using binomial expansion and shifting indices, (17) leads to

x
∞
∑

n=0

P (α)
n (x; d)

tn

n!

=

∞
∑

n=0

d
∑

k=0

(α + 1)

(

d

k

)

(−1)k (n− k + 1)k P
(α)
n−k (x; d)

tn

n!

−

∞
∑

n=0

d+1
∑

k=0

1

d

(

d+ 1

k

)

(−1)k (n− k + 1)k P
(α)
n−k+1 (x; d)

tn

n!
.

By comparing the coefficients of tn

n!
, we obtain

xP (α)
n (x; d)

=

d
∑

k=0

(α+ 1)

(

d

k

)

(−1)k (n− k + 1)k P
(α)
n−k (x; d)

−
1

d

d+1
∑

k=0

(

d+ 1

k

)

(−1)k (n− k + 1)k P
(α)
n−k+1 (x; d) . (18)
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After some computations, (18) becomes

xP (α)
n (x; d)

=

d+1
∑

k=0

(−1)k−1

[

(α + 1)

(

d

k − 1

)

(n− k + 2)k−1 +
1

d

(

d+ 1

k

)

(n− k + 1)k

]

×P
(α)
n−k+1 (x; d)

=

d+1
∑

k=0

ak,d (n)P
(α)
n−k+1 (x; d)

which finishes the proof.

Remark 3.4 It is worthy to note that from (16), changing k by −k+d+1,

the PS
{

P
(α)
n (.; d)

}

n≥0
satisfies a (d+ 1)-order recurrence relation of the type

given by (2). Notice that ak,d (n) satisfies the regularity conditions

ad+1,d (n) a0,d (n) 6= 0, n ≥ d

with

a0,d (n) = −
1

d

ad+1,d (n) = (−1)d
[(

α+ 1 +
1

d
(n− d)

)

(n− d+ 1)d

]

under the restriction α /∈ {−1,−2, ...}.

Remark 3.5 For d = 1, the recurrence relation obtained in Theorem 3.3
reduces a well-known three-term recurrence relation for the Laguerre polyno-

mials
{

L
(α)
n (x)

}

n≥0

L
(α)
n+1 (x) =

(

2 +
α− 1− x

n+ 1

)

L(α)
n (x)−

(

1 +
α− 1

n + 1

)

L
(α)
n−1 (x) .

Finally, we give a (d+ 1)-order differential equation satisfied by the PS
{

P
(α)
n (.; d)

}

n≥0
.

Theorem 3.6 The PS
{

P
(α)
n (.; d)

}

n≥0
, generated by (3), satisfies a (d+ 1)-

order differential equation of the type
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[

(δ − x)

d
∏

j=1

(

δ − x+ α +
1

d
(j − 1)

)

+x

d
∏

j=1

(

δ − x+ α + 1 +
1

d
(n+ j − 1)

)

]

P (α)
n (x; d) = 0 (19)

where δ = x d
dx
.

Proof According to the relation (12), we can obtain the differential equation
(19) from [22, Eq. (5.6)].

Remark 3.7 Taking d = 1 in the differential equation (19) gives well-
known differential equation satisfied by the Laguerre polynomials of the type

xy
′′

(x) + (α + 1− x) y
′

(x) + ny (x) = 0, y (x) = L(α)
n (x) .
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[24] L. Vinet, A. Zhedanov, Automorphisms of the Heisenberg-Weyl algebra
and d-orthogonal polynomials, J. Math. Phys., 50 (2009), 19 pp.

[25] A. Zaghouani, Some basic d-orthogonal polynomial sets, Georgian Math.
J., 12 (2005), 583-593.

[26] E. Zerouki, A. Boukhemis, On the 2-orthogonal polynomials and the gen-
eralized birth and death process, Int. J. Math. Math. Sci., Article ID 28131
(2006), 1-12.

Received: July, 2012


