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Abstract

In this paper a closed form solution of a fractional integro-differential

equation of Volterra type involving Mittag-Leffler function has been obtained

using straight forward technique of Sumudu transform. Some particular cases

have also been considered.
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1. INTRODUCTION

The differential equations have played a central role in every aspect of applied
mathematics for a very long time and have assumed a greater significance with
the advent of the computers and advanced softwares. There are several
transforms which are used to solve differential equations arising in engineering
problems. These include Laplace, Mellin, Fourier, and fractional Fourier
transform etc. Recently a new integral transform known as Sumudu transform
has been introduced by Watugala [11]. Due to its scale and unit preserving
properties the Sumudu transform has a great potential of applicability in the
areas of engineering mathematics and applied sciences.

Since its introduction, several researchers endeavoured to explore its properties
and its prospective uses. Considered as a theoretical dual to Laplace transform, it
provides a more effective tool for problem solving without resorting to a new
frequency domain. The inverse Sumudu transform was given by Weerakoon [12].
Several fundamental properties of Sumudu transform were derived by Belgacem
et al [2, 3]. They also applied this transform to solve an integral production
problem. Later on Loonker and Banerji [6] obtained the solution of Abel integral
equation using Sumudu transform.

The object of this paper is to present some of the important features of
Sumudu transform and a straightforward alternative derivation of the solution of
fractional integro-differential equation of Volterra type. The solution of fractional
integro-differential equation is demonstrated by many authors, including Barrett
[1], Ross and Sachdeva [8], Kilbas, Saigo and Saxena [5], Gupta and Sharma [4]
and Saxena [9] and others.

2. DEFINITIONS

The Sumudu transform can be defined [4, 6] for a function of
exponential order as follows:

We consider functions in the set A, defined in the form:

 )[0,(-1) tif,Me|f(t)|such that0,and/orM,|f(t)A j/| t|
21  j     ... (1)

For a given function f(t) in the set A, the constant M must be finite, while τ1 and τ2

need not simultaneously exist, and each may be infinite. Instead of being used as
a power to the exponential as in case of the Laplace transform, the variable ‘u’ in
the Sumudu transform is used to factor the variable ‘t’ in the argument of the
function f. Specifically, for f(t) the sumudu transform is defined by
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In other words, the Sumudu transform can be written as
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The convolution of Sumudu transform is
)()()]([)]([))(*( sGsFsgSfSsgfS   , where Re(s) > 0    … (4)

The inversion formula of Sumudu transform is given by
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The generalized Mittag-Leffler function in three parameters α, β, δ is defined by,
Prabhakar, [7, 10], as
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which in the special case of β = ρ = 1, reduces to well-known Mittag-Leffler
function.
The Riemann-Liouville fractional integral of order  is defined in the following
form:
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Similarly the Riemann-Liouville fractional derivative of order  is defined in the
following form:
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The Sumudu transform of fractional derivative of the function f(t) is defined as
[2, 4]
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Further the Sumudu transform of Mittag-Leffler function is given by
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3. SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION

Various physical phenomena like diffusion can be modeled in terms of
integro-differential equation. These can be extended to fractional integral
equation by replacing ordinary integral to their fractional counter parts. Consider
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Volterra type integro-differential involving generalized Mittag-Leffler function
and solve by employing Sumudu transform.

Theorem 1: Let, , ρ Є C and t Є R, Re() > 0, Re() > 0 , f(t) be assumed to be
continuous on every finite interval [0,T], 0 < t < , and be of exponential order σ
when t .Then the Cauchy  problem for fractional integro-differential
equation of Volterra type
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together with the initial conditions
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  , k = 1…….n = -[-R()], -1<  n], n Є N  … (12)

where a1…… ak are prescribed constants, there exists a unique continuous
solution of Cauchy problem (11) and (12) given by
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Proof: By applying the Sumudu transform to equation (11), we get
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which gives
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By taking inverse Sumudu transform, we get
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Now applying the convolution theorem of Sumudu transform,

 





01

)()()()( dttftah
n

k
kk  … (18)

544 Renu Jain and Dinesh Singh



where Ωr() and Θ(τ) is given by equation (14) and (15) respectively.

SPECIAL CASES: (i) By setting ρ = 1 in (11), we get
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Under the relevant conditions, the unique continuous solution is given by
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(ii) By setting ρ = 1 and β = 1 in Mittag-Leffler function, we have
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Then unique continuous solution under the relevant conditions, is given by
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Theorem 2: If , , ρ, λ Є C and t Є R, Re() > 0, Re() > 0, and f(t) is assumed
to be continuous on every finite interval [0,T], 0 < t < , and is of exponential
order σ when     t, then the Volterra type integral equation
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has its explicit solution
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Proof: By applying the Sumudu transform on both sides of Volterra integral
equation (28), we get
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By taking inverse Sumudu transform, we get
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By application of the convolution theorem of Sumudu transform, we get
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where Θ(τ) is given by equation (30).
It is hoped that the technique used in this chapter will be applicable to a wide
range of areas including engineering, mathematical, chemical and physical
sciences, in view of frequent occurrence of such integro-differential equations in
these subjects.
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