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Abstract

Portfolio optimization Problem is to find the securities portfolio min-

imizing the risk for a required return or maximizing the return for a

given risk level.In this paper, we discuss a portfolio investment model

with expected rate of return under non-negative constrains.we proved

some properties of the model.Using these properties, the model solving

will be simplified.
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1 Introduction

Portfolio theory has been an important part of modern finance theory. The
traditional portfolio optimization problem is to find an investment plan for
securities with a reasonable trade-off between the rate of return and risk.The
mean-variance model of Markowitz is designed to obtain the portfolio which
can achieve a specified average rate of return with the minimum risk[1]. Because
of its computational complexity, many researchers study the method to solve
the model[2,3].The main aim of the present paper is to give some properties
for the Markowitz model so as to simplified the solving process.

2 Mathematical Model

The following model is based upon mean-variance model by Markowitz[1].














Min f(w) = wTV w

s. t. Aw = b

w ≥ 0

(1)

Where

w = (w1, x2, . . . , wn)
T , V = (σij)n×n

A =

(

r1 r2 · · · rn
1 1 · · · 1

)

, b =

(

r∗

1

)

,
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n is the number of securities selected by investors;
wi is the proportion of securities i in the portfolio;
w = (w1, w2, . . . , wn) is the investment portfolio;
σij is the covariance between securities i and j;
f(w) is the risk measured by the variance of the portfolio;
ri is the expected return rate of securities i;
r∗ is the expected return rate of the portfolio.
If we remove the constrains w ≥ 0, then we get the model (2):

{

Min f(w) = wTV w

s. t. Aw = b
(2)

3 Some Properties for Mean-Variance Model

Model (1) and (2) are both quadratic programming model, for the covariance
matrix V be positive semi-definite, the optimal solutions of model (1) and
(2) are existed and unique.For simplicity we further assume the matrix V be
positive definite, and the optimal solution is of uniqueness.[2]

We denotes the optimal solution of model (1) by w(1) = (x1, x2, . . . , xn)
T , and

denotes the optimal solution of model (2) by w(2) = (y1, y2, . . . , yn)
T .Now we

describe some useful properties for the two models.
Lemma 1[3] w(2) be the optimal solution of model (2), if and only if there
exists a vector α satisfy

{

2V w(2) = ATα

Aw(2) = b

and the optimal solution of model (2) is w(2) = V −1AT (AV −1AT )−1b.
Lemma 2[3] w(1) be the optimal solution of model (1), if and only if there
exists a vector β and a vector γ = (γ1, γ2, . . . , γn)

T satisfy



















2V w(1) = ATβ + γ

Aw(1) = b

γixi = 0, i = 1, 2, . . . , n
w(1) ≥ 0, γ ≥ 0

Theorem 1 If w(1) 6= w(2), then there exists index i satisfy xi = 0 and yi < 0.
Proof. Because w(1) 6= w(2), we have f(w(1)) > f(w(2)), and there is at least
one index i satisfy yi < 0. Define I = {i|yi < 0} 6= φ.
Using Lemma 1 and Lemma 2 , by calculation it is easy to get

n
∑

i=1
yiγi =

∑

i∈I
yiγi +

∑

i 6∈I
yiγi < 0.

Since
∑

i 6∈I
yiγi ≥ 0, therefore

∑

i∈I
yiγi < 0.

Thus there is at least one index i ∈ I makes γi > 0, and further from Lemma
2, we know that the corresponding xi = 0.
For xi = 0, we call the securities i is superfluous for model (1).
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Without loss of generality, we assume the vector γ in Lemma 2 satisfy
γi = 0 (i = 1, 2, . . . , m) and γi > 0 (i = m+ 1, m+ 2, . . . , n).
Accordingly, denote the optimal solution of model (1) by w(1) ≡ ((x(1))T , (x(2))T )T ,
where x(1) = (x1, x2, . . . , xm)

T , x(2) = (xm+1, xm+2, . . . , xn)
T . Then we have the

following conclusions.

Theorem 2 Let A1 =

(

r1 r2 · · · rm
1 1 · · · 1

)

, V11 = (σij)m×m,then

x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0;xm+1 = 0, xm+2 = 0, . . . , xn = 0; and x(1) =
(x1, x2, . . . , xm)

T is the optimal solution of the following model (3)
{

Min f1(w1, w2, . . . , wm) = (w1, w2, . . . , wm)V11(w1, w2, . . . , wm)
T

s. t. A1(w1, w2, . . . , wm)
T = b

(3)

Proof. According to Lemma 2, the x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0;xm+1 =
0, xm+2 = 0, . . . , xn = 0 is evident, and 2V w(1) = ATβ + γ and Aw(1) = b,
through a simple calculation we know that

2V11x
(1) = AT

1 β and A1x
(1) = b .

It is obtained from lemma 1 that x(1) = (x1, x2, . . . , xm)
T is the optimal solu-

tion of model (3).
Theorem 3 When the number of securities in the portfolio is reduced, the
risk of the optimal portfolio will not fall.
Proof. Without loss of generality, we consider model (2) and model (3)(0 <

m < n).Let w(2) = (y1, y2, . . . , yn)
T be the optimal solution of model (2),

w(3) = (ȳ1, ȳ2, . . . , ȳm)
T be the optimal solution of model (3).

Because ((w(3))T , 0)T is the feasible solution of model (2), so we have
f(w(2)) = (w(2))TV w(2) ≤ ((w(3))T , 0)V ((w(3))T , 0)T = (w(3))TV11w

(3) = f1(w
(3)).

Remark: Theorem 2 and Theorem 3 show that, remove the superfluous se-
curities of model (1) from model (2),the simplified model (2) [That is model
(3), and without regard the non-negative of wi ] can contribute the optimal
solution of model (1).

References

[1] H Markowitz. Portfolio selection. Journal of Finance[J], 1952,7:77-91.

[2] D S Qian, Y H Guo,etc. Operations Research[M],Second edition,Tsinghua
University Press,Beijing,China,1990.(Chinese)

[3] M S Bazaraa, C M Shetty.Nonlinear Programming-Theory and Algo-
rithms[M] John wiley and sons1979

Received: July, 2012


