Mathematica Aeterna, Vol. 2, 2012, no. 9, 731-734

Comparison Theorem for Reflected ABSDEs

X. M. Xu
School of Mathematical Sciences
Nanjing Normal University, Nanjing, 210023, China

Abstract

In this paper, we give a comparison theorem for reflected anticipated backward stochastic differential equations (ABSDEs).

Mathematics Subject Classification: 60H05, 60H10
Keywords: comparison theorem, reflected anticipated backward stochastic differential equation

1 Introduction

It is well known that one of the achievements of BSDE theory is the comparison theorem. In this paper we are concerned with the comparison theorem for the following reflected ABSDE:

$$
\left\{\begin{align*}
-d Y_{t}^{(j)} & =f_{j}\left(t, Y_{t}^{(j)}, Z_{t}^{(j)}, Y_{t+\delta(t)}^{(j)}, Z_{t+\zeta(t)}^{(j)}\right) d t+d K_{t}^{(j)}-Z_{t}^{(j)} d B_{t}, \quad t \in[0, T] \tag{1}\\
Y_{t}^{(j)} & =\xi_{t}^{(j)}, \quad t \in[T, T+C] \\
Z_{t}^{(j)} & =\eta_{t}^{(j)}, \quad t \in[T, T+C] \\
Y_{t}^{(j)} & \geq S_{t}^{(j)}, \quad t \in[0, T], \quad \int_{0}^{T}\left(Y_{t}^{(j)}-S_{t}^{(j)}\right) d K_{t}^{(j)}=0
\end{align*}\right.
$$

where $\delta(\cdot):[0, T] \rightarrow \mathbb{R}^{+} \backslash\{0\}$ and $\zeta(\cdot):[0, T] \rightarrow \mathbb{R}^{+} \backslash\{0\}$ are continuous functions satisfying
(a1) there exists a constant $C \geq 0$ such that for each $t \in[0, T]$,

$$
t+\delta(t) \leq T+C, \quad t+\zeta(t) \leq T+C
$$

(a2) there exists a constant $M \geq 0$ such that for each $t \in[0, T]$ and each nonnegative integrable function $g(\cdot)$,

$$
\int_{t}^{T} g(s+\delta(s)) d s \leq M \int_{t}^{T+C} g(s) d s, \int_{t}^{T} g(s+\zeta(s)) d s \leq M \int_{t}^{T+C} g(s) d s
$$

For this, we first introduce some notations and preliminaries.
Let $\left\{B_{t} ; t \geq 0\right\}$ be a d-dimensional standard Brownian motion on a probability space (Ω, \mathcal{F}, P) and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be its natural filtration. Denote by $|\cdot|$ the norm in \mathbb{R}^{m}. Given $T>0$, we will use the following notations:

- $L^{2}\left(\mathcal{F}_{T} ; \mathbb{R}^{m}\right):=\left\{\xi \in \mathbb{R}^{m} \mid \xi\right.$ is an \mathcal{F}_{T}-measurable random variable such that $\left.E|\xi|^{2}<+\infty\right\}$;
- $L_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{m}\right):=\left\{\varphi: \Omega \times[0, T] \rightarrow \mathbb{R}^{m} \mid \varphi\right.$ is an \mathcal{F}_{t}-progressively measurable process such that $\left.E \int_{0}^{T}\left|\varphi_{t}\right|^{2} d t<+\infty\right\}$;
- $S_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{m}\right):=\left\{\varphi: \Omega \times[0, T] \rightarrow \mathbb{R}^{m} \mid \varphi\right.$ is a continuous and $\mathcal{F}_{t^{-}}$ progressively measurable process such that $\left.E\left[\sup _{0 \leq t \leq T}\left|\varphi_{t}\right|^{2}\right]<+\infty\right\}$;
- $A^{2}(0, T ; \mathbb{R})=\{K: \Omega \times[0, T] \rightarrow \mathbb{R} \mid K$ is an \mathcal{F}-adapted continuous increasing process such that $K_{0}=0$ and $\left.K_{T} \in L^{2}\left(\mathcal{F}_{T}\right)\right\}$.
For the terminal condition $\left(\xi_{t}^{(j)}, \eta_{t}^{(j)}\right)_{t \in[T, T+C]}$, the generator $f_{j}(\omega, s, y, z, \theta, \phi)$: $\Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \times S_{\mathcal{F}}^{2}(s, T+C ; \mathbb{R}) \times L_{\mathcal{F}}^{2}\left(s, T+C ; \mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathcal{F}_{s}\right)$, and the "obstacle" $\left(S_{t}^{(j)}\right)_{t \in[0, T]}$, we suppose that
(H1) $\left(\xi^{(j)}, \eta^{(j)}\right) \in S_{\mathcal{F}}^{2}(T, T+C ; \mathbb{R}) \times L_{\mathcal{F}}^{2}\left(T, T+C ; \mathbb{R}^{d}\right)$.
(H2) There exists a constant $L_{f_{j}}>0$ such that for each $s \in[0, T], y, y^{\prime} \in \mathbb{R}$, $z, z^{\prime} \in \mathbb{R}^{d}, \theta, \theta^{\prime} \in L_{\mathcal{F}}^{2}(s, T+C ; \mathbb{R}), \phi, \phi^{\prime} \in L_{\mathcal{F}}^{2}\left(s, T+C ; \mathbb{R}^{d}\right), r, \bar{r} \in[s, T+C]$, the following holds:
$\left|f_{j}\left(s, y, z, \theta_{r}, \phi_{\bar{r}}\right)-f_{j}\left(s, y^{\prime}, z^{\prime}, \theta_{r}^{\prime}, \phi_{\bar{r}}^{\prime}\right)\right| \leq L_{f_{j}}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|+E^{\mathcal{F}_{s}}\left[\left|\theta_{r}-\theta_{r}^{\prime}\right|+\left|\theta_{\bar{r}}-\phi_{\bar{r}}^{\prime}\right|\right]\right) ;$
(H3) $E\left[\int_{0}^{T}\left|f_{j}(s, 0,0,0,0)\right|^{2} d s\right]<+\infty$.
(H4) $S^{(j)}$ is a continuous progressively measurable real-valued process satisfying $E \sup _{0 \leq t \leq T}\left[\left(S_{t}^{(j)}\right)^{+}\right]^{2}<+\infty$ and $S_{T}^{(j)} \leq \xi_{T}^{(j)}$.

Let us review the existence and uniqueness theorem from [2].
Theorem 1.1 Assume that (a1), (a2) and (H1)-(H4) hold, then the reflected ABSDE (1) has a unique solution $(Y, Z, K) \in S_{\mathcal{F}}^{2}(0, T ; \mathbb{R}) \times L_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{d}\right) \times$ $A^{2}(0, T ; \mathbb{R})$.

The next result plays a key role in the next part. Readers are referred to [1] for its detailed proof.

Lemma 1.2 Putting $t_{0}=T$, we define by iteration
$t_{i}:=\min \left\{t \in[0, T]: \min \left\{s+\delta^{(1)}(s), s+\delta^{(2)}(s)\right\} \geq t_{i-1}\right.$, for all $\left.s \in[t, T]\right\}, \quad i \geq 1$.
Set $N:=\max \left\{i: t_{i-1}>0\right\}$. Then N is finite, $t_{N}=0$ and

$$
[0, T]=\left[0, t_{N-1}\right] \cup\left[t_{N-1}, t_{N-2}\right] \cup \cdots \cup\left[t_{2}, t_{1}\right] \cup\left[t_{1}, T\right] .
$$

2 Main Results

Consider two reflected ABSDEs (1) for $j=1,2$. Then by Theorem 1.1, either of the reflected ABSDEs has a unique adapted solution, denoted by $\left(Y^{(j)}, Z^{(j)}, K^{(j)}\right)$.

Theorem 2.1 $\operatorname{Let}\left(Y^{(j)}, Z^{(j)}, K^{(j)}\right) \in S_{\mathcal{F}}^{2}(0, T ; \mathbb{R}) \times L_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{d}\right) \times A^{2}(0, T ; \mathbb{R})$ $(j=1,2)$ be the unique solutions to reflected $A B S D E s$ (1) respectively. Assume that
(i) $\xi_{s}^{(1)} \geq \xi_{s}^{(2)}, s \in[T, T+C]$, a.s.;
(ii) for each $s \in[0, T]$, $(y, z) \in \mathbb{R} \times \mathbb{R}^{d}, \theta^{(j)} \in S_{\mathcal{F}}^{2}(s, T+C ; \mathbb{R})(j=1,2)$ such that $\theta^{(1)} \geq \theta^{(2)},\left\{\theta_{r}^{(j)}\right\}_{r \in[s, T]}$ is a continuous semimartingale and $\left\{\theta_{r}^{(j)}\right\}_{r \in[T, T+C]}=$ $\left\{\xi_{r}^{(j)}\right\}_{r \in[T, T+C]}$,

$$
f_{1}\left(s, y, z, \theta_{s+\delta(s)}^{(1)}, \eta_{s+\zeta(s)}^{(1)}\right) \geq f_{2}\left(s, y, z, \theta_{s+\delta(s)}^{(2)}, \eta_{s+\zeta(s)}^{(2)}\right), \quad \text { a.e., a.s. }
$$

$f_{1}\left(s, y, z, \theta_{s+\delta(s)}^{(1)},\left.\frac{d\left\langle\theta^{(1)}, B\right\rangle_{r}}{d r}\right|_{r=s+\zeta(s)}\right) \geq f_{2}\left(s, y, z, \theta_{s+\delta(s)}^{(2)},\left.\frac{d\left\langle\theta^{(2)}, B\right\rangle_{r}}{d r}\right|_{r=s+\zeta(s)}\right)$, a.e., a.s., $f_{1}\left(s, y, z, \xi_{s+\delta(s)}^{(1)},\left.\frac{d\left\langle\theta^{(1)}, B\right\rangle_{r}}{d r}\right|_{r=s+\zeta(s)}\right) \geq f_{2}\left(s, y, z, \xi_{s+\delta(s)}^{(2)},\left.\frac{d\left\langle\theta^{(2)}, B\right\rangle_{r}}{d r}\right|_{r=s+\zeta(s)}\right)$, a.e., a.s.;
(iii) $S_{s}^{(1)} \geq S_{s}^{(2)}, s \in[0, T]$, a.s..

Then $Y_{t}^{(1)} \geq Y_{t}^{(2)}, \quad d K_{t}^{(1)} \leq d K_{t}^{(2)}, \quad t \in[0, T], \quad$ a.s..
Proof. According to Lemma 1.2, consider the problem one time interval by one time interval. For the first step, we consider the case when $t \in\left[t_{1}, T\right]$, then equivalently we can consider the following reflected BSDE over time interval $\left[t_{1}, T\right]$:

$$
\left\{\begin{array}{l}
Y_{t}^{1,(j)}=\xi_{T}^{(j)}+\int_{t}^{T} f\left(s, Y_{s}^{1,(j)}, Z_{s}^{1,(j)}, \xi_{s+\delta(s)}^{(j)}, \eta_{s+\zeta(s)}^{(j)}\right) d s+K_{T}^{1,(j)}-K_{t}^{1,(j)}-\int_{t}^{T} Z_{s}^{1,(j)} d B_{s} ; \\
Y_{t}^{1,(j)} \geq S_{t}^{(j)}, \quad t \in\left[t_{1}, T\right], \quad \int_{t_{1}}^{T}\left(Y_{t}^{1,(j)}-S_{t}^{(j)}\right) d K_{t}^{1,(j)}=0 .
\end{array}\right.
$$

from which we have

$$
\begin{equation*}
Z_{t}^{1,(j)}=\frac{d\left\langle Y^{1,(j)}, B\right\rangle_{t}}{d t}, \quad t \in\left[t_{1}, T\right] . \tag{2}
\end{equation*}
$$

Noticing that $\xi^{(j)} \in S_{\mathcal{F}}^{2}(T, T+C ; \mathbb{R})(j=1,2)$ and $\xi^{(1)} \geq \xi^{(2)}$, from (ii), we can get, for $s \in\left[t_{1}, T\right], y \in \mathbb{R}, z \in \mathbb{R}^{d}$,

$$
f_{1}\left(s, y, z, \xi_{s+\delta(s)}^{(1)}, \eta_{s+\zeta(s)}^{(1)}\right) \geq f_{2}\left(s, y, z, \xi_{s+\delta(s)}^{(2)}, \eta_{s+\zeta(s)}^{(2)}\right) .
$$

According to the comparison result for reflected BSDEs, we can get

$$
Y_{t}^{1,(1)} \geq Y_{t}^{1,(2)}, \quad d K_{t}^{1,(1)} \leq d K_{t}^{1,(2)}, \quad t \in\left[t_{1}, T\right], \quad \text { a.s. }
$$

i.e.,

$$
\begin{equation*}
Y_{t}^{(1)} \geq Y_{t}^{(2)}, \quad d K_{t}^{(1)} \leq d K_{t}^{(2)}, \quad t \in\left[t_{1}, T+C\right], \quad \text { a.s.. } \tag{3}
\end{equation*}
$$

For the second step, we consider the case when $t \in\left[t_{2}, t_{1}\right]$. Similarly, we can consider the following reflected BSDE over $\left[t_{2}, t_{1}\right]$ equivalently:

$$
\left\{\begin{array}{l}
Y_{t}^{2,(j)}=Y_{t_{1}}^{(j)}+\int_{t}^{t_{1}} f\left(s, Y_{s}^{2,(j)}, Z_{s}^{2,(j)}, Y_{s+\delta(s)}^{(j)}, Z_{s+\zeta(s)}^{(j)}\right) d s+K_{t_{1}}^{2,(j)}-K_{t}^{2,(j)}-\int_{t}^{t_{1}} Z_{s}^{2,(j)} d B_{s} ; \\
Y_{t}^{2,(j)} \geq S_{t}^{(j)}, \quad t \in\left[t_{2}, t_{1}\right], \quad \int_{t_{2}}^{t_{1}}\left(Y_{t}^{2,(j)}-S_{t}^{(j)}\right) d K_{t}^{2,(j)}=0 .
\end{array}\right.
$$

from which we have $Z_{t}^{2,(j)}=\frac{d\left\langle Y^{2,(j)}, B\right\rangle_{t}}{d t}$ for $t \in\left[t_{2}, t_{1}\right]$. Noticing (2) and (3), according to (ii), we have, for $s \in\left[t_{2}, t_{1}\right], y \in \mathbb{R}, z \in \mathbb{R}^{d}$,

$$
f_{1}\left(s, y, z, Y_{s+\delta(s)}^{(1)}, Z_{s+\zeta(s)}^{(1)}\right) \geq f_{2}\left(s, y, z, Y_{s+\delta(s)}^{(2)}, Z_{s+\zeta(s)}^{(2)}\right) .
$$

Applying the comparison result for reflected BSDEs again, we can finally get

$$
Y_{t}^{(1)} \geq Y_{t}^{(2)}, \quad d K_{t}^{(1)} \leq d K_{t}^{(2)}, \quad t \in\left[t_{2}, t_{1}\right], \quad \text { a.s.. }
$$

Similarly to the above steps, we can give the proofs for the other cases when $t \in\left[t_{3}, t_{2}\right],\left[t_{4}, t_{3}\right], \cdots,\left[t_{N}, t_{N-1}\right]$.

Remark 2.2 If f_{1} and f_{2} are independent of the anticipated term of Z, then the three inequalities in (ii) can reduce to one inequality:

$$
f_{1}\left(t, y, z, \theta_{t+\delta(t)}^{(1)}\right) \geq f_{2}\left(t, y, z, \theta_{t+\delta(t)}^{(2)}\right) .
$$

References

[1] X. M. Xu, Necessary and sufficient condition for the comparison theorem of multidimensional anticipated backward stochastic differential equations, Sci. China Math.,2011, 54(2): 301-310.
[2] X. M. Xu, Reflected solutions of anticipated BSDEs and related optimal stopping time problem, Submitted for publication, 2012.

Received: October, 2012

