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Abstract
In this study, we implement the exp-function method for the analytic solutions of the
Cahn Allen, the clannish random walker’s parabolic and the Fitzhugh—Nagumo equations.
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1. Introduction

The mathematical modeling of events in nature can be explained by differential equa-
tions.These equations are mathematical models of complex physical occurrences that arise in
engineering, chemistry, biology, mechanics and physics. So, nonlinear phenomena play a crucial
role in applied mathematics and physics. Calculating exact and numerical solutions of nonlinear
equations in mathematical physics play an important role in soliton theory [1, 2]. Recently,
it has become more interesting that obtaining exact solutions of nonlinear partial differential
equations through using symbolical computer programs such as Maple, Matlab, Mathematica
that facilitate complex and tedious algebrical computations. It is too important to find exact
solutions of nonlinear partial differential equations. Therefore, various effective methods have
been developed to understand the mechanisms of these physical models, to help physicists and
engineers and to ensure knowledge for physical problems and its applications. Most of these
methods are based on finding balance term with balancing of the highest order linear and non-
linear term. So, these methods can be only applied to nonlinear partial differential equation.
Some of these methods are: Tanh function method by Malfliet in 1992 [3], automatic Tanh func-
tion method by Parkers and Duffy in 1996 [4], extended Tanh function method by Fan in 2000
[5], jacobi elliptic function method by Fu, Liu and Zhao in 2001 [6], modified extended Tanh
function method by Elwakil in 2002 [7], generalized extended Tanh function method by Zheng in
2003 [8], modified jacobi elliptic function method by Shen and Pan in 2003 [9], improved Tanh
function method by Chen and Zhang in 2004 [10], generalized jacobi elliptic function method by
Chen and Hong-Qing in 2004 [11], jacobi elliptic function rational expansion method by Chen,
Wang and Li in 2004 [12], the weierstrass elliptic function expansion method by Chen and Yan in
2006 [13], the exp-method by He in 2006 [14], G’ /G expansion method by Wang, Li and Zhang
in 2008 [15], extended G'/G expansion method by Guo and Zhou in 2010 [16], generalized G'/G
expansion method by Lii in 2010 [17].

In this study, we implement the exp-method for the Cahn Allen equation [18], the clannish
random walker’s parabolic equation [19] and the Fitzhugh-Nagumo equation [20]. The exp-
method was firstly presented by He [14] and was implemented by He and Wu in 2006. The
method is generally used for nonlinear partial differential equations, but it is Zhou [21] who
first applied the method to the differential-difference equation with great success. Following
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Zhu, Dai obtained some excellent results for the discrete nonlinear Schrédinger equation and
the hybrid lattice equation [22]. Xu and Zhang [23, 24] contributed much to the development of
the method. Separately, Xu obtained periodic solutions [25] by using the exp function method.
Ozig and Koroglu [26] studied the exp function method for traveling wave solution. Wu and
He obtained solitary solutions, periodic solutions and compacton-like solutions [27] by using the
exp function method. Kaya and Inan found some solutions for the various nonlinear evolution
equations [28] with the exp function method. We aim to find some traveling wave solutions of
Cahn Allen equation, clannish random walker’s parabolic equation and the Fitzhugh—Nagumo
equation by using the exp-function method. The method was further developed some other
scientists [29-34].

2. An Analysis of the Method and applications

Before starting to give the exp-function method, we give a simple description of the exp-
function method. For doing this, it is considered in a two-variable general form of nonlinear
PDE

Q(uautaul‘auwwa"') :Oa (1)
with u (z,t) = u (§), £ = kx + wt, we get a nonlinear ODE for  (§)
Q/(u,u/,u”,um, ...)=0, (2)

where k and w are constants. We assume the solution of the Eq. (2) as following

u(f) = "5~ : (3)

where ¢, d, p and ¢ are positive integer, which are unknown and to be further determined, a,
and by, are unknown constants. We suppose that the solution of Eq. (2) can be expressed as

uw(f) = acexp (c€) + ... + a_gexp (—d§)
bpexp (p€) + ... + b_gexp (—g€)’

(4)

where ¢, d, p and ¢ are positive integer that can be determined by balancing the highest order
derivative and with the highest nonlinear terms into Eq. (2). Substituting solution (4) into Eq.
(2) yields a set of algebraic equations for exp (§); then all coefficients of exp (£) have to vanish.
After this separated algebraic equation, we can find a, and b,, constants.

Example 1. Let’s consider nonlinear parabolic partial differential equation given by
Up = Ugy — " + u, (5)

for n = 3, Eq.(5) becomes Cahn Allen equation [18]. This equation arises in many scientific
applications such as mathematical biology, quantum mechanics and plasma physics. To solve
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this example, we can use transformation £ = kx +wt (where, k and w are the wave number and
the wave speed, respectively) then Eq. (5) becomes to an ordinary differential equation

wu' — k4 —u =0, (6)
when balancing v® with u”
crexp[(Bp+c) ]+ ... _ C3exp [c€] + ...
coexp [4p€] + ... cqexp [p€] + ...

then gives p = c. Similarly, to determine values of d and ¢ when balancing u? with u'

..dyexp|— (3¢ +d)¢] _ dzexp [—d¢]
...dy exp [—4q¢] ...dgexp [—q€]’

then gives ¢ = d.
For simplicity, we set p=c=1and ¢ =d =1, so Eq. (4) reduces to

_arexp(§) +ag+a_yexp(=§)
(€)= exp (§) + b+ b_jexp (=) ™

substituting Eq. (7) into Eq. (6) yields a set of algebraic equations for ag, a1,a_1,bg,b_1,w, k.
Algebraic equations system can be written as following

%(—aﬁai’:o),

% (a/?il — a_1b2_1 = 0) 3
1

— (—ag — k:2a0 —wag + 3a0a2 — 2a1bg + k2a1bo + waibg) = 0,
A 1

(3@2_1(10 — a0b2_1 - k2a0b2_1 + wa0b2_1 — 2a_1b_1b0 + k2a_1b_1b0 — wa_lb_lbo) = 0, (8)

SN NN

3a_1a3 + 3a2_1a1 —2a_1b_1 + 4k2a_1b_1 — 2wa_1b_1 — a1b2_1 — 4k2a1b2_1+
+2wa1b2_1 — 2agb_1bg + kzaob_lbo + wagb_1bg — a_lb% — k:2a_1b% — wa_lb% =0

—a_q —4k*a_q — 2wa_1 + 3a3a1 + 3a_1a% — 2a1b_1 + 4k%a1b_1 + 2waib_1—
—2apbg + k2a0b0 — wagbg — alb% — k:2a1b% + walb% =0 ’

| =

l ag + 6a_1apa1 — 2a0b—1 + 6k2a0b_1 —2a_1bg — 3k2a_1b0 — 3wa—_1bg—
A —2a1b_1bg — 3k2a1b_1b0 + 3wa1b_1bg — aob% =0 ’

where A = (e6 + by + b_le_f)g. It is solved algebraic equations system with the aid of Mathe-
matica and it is obtained values ag, a1, a_1, by, b—1,w, k. If these values substitute into Eq. (7),
we obtain traveling wave solutions of Eq.(5) as following

Family 1

1 3 1
k= A w=-—3, 6-1= —b_1, ap = 5 <—b0i\/—4b—1+bg>, ar =0, by #0,
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. 3 (b V=46 + ) — boyexp (g + ) 9
w (@t) = exp <_%x - gt) + by + b_1 exp (%w + %t> ’
3

) (cosh (% n %) + sinh (% n t)) by — b+ \/—db_y + 02

2
2 (cosh (% + %) — sinh (% + %) + (cosh (% + %) + sinh (% + %)) b_1+ b0>

u u
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Figure 2. Traveling wave solution of equation (5) for solution (9), a) t =0, b) t =5,
Q) t=10,d)t=15 (bg=—1,b_y = —1)
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Family 2

1 3 1
= —— = —— 1 = 0_ = — :l: —4_ 2 = _
k \/ﬁ,w 5 0-1 b_1, ag 2<b0 A/ b1+b0>,a1 0, b1 #0,

i AT 10 (43)
exp (—%w——t>+bo+b 1 €exp (% + 3¢ )
Family 3
s (08) = o (—dpo+3t) +3 (20— V=05 8)
exp (—Tﬂc + 375) +bo +b_1exp (\/—x - —t)
Family 4

1 3 1 /
k:_ﬁ’ ’LUZE, a_1 =0, a0:§<j:b0+ —4b_1+b3>, ap = %1, b_17£0,
+exp (—%x + §t> +1 (:I:bo +/—4b_1 + b%)

ug (z,t) = . .
eXp(—Tx—i- t)—l—bo—i-b 1exp(\/—x——t>
Family 5
1 3
k=——, w=-,a_1=0,a0=0, a1 = %1, bg=0, b_ 0,
53 1 1 0 1 0 1 F#
+exp (%ﬁx—i—&t)
Us (.T,t) = 1 3
exp (z—ﬁx + Zt> 4+ b_1exp (—Fx — —t)
Family 6

i (—bo £ /—4b_q + bg) —b_yexp (—%x - %t>

exp (%x — %t) + by +b_1exp (—%x + %t)

1 1
% 5 — —§<—b0:|:\/m>,a1:0ab—17£0’
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Family 7

ur (2.1 ~—— A (15)
exp (Ex — §t> +bo +b_1exp (—%x + §t>
Family 8
1
k=4—, w==,a_-1=0, a0=0, ag ==%1, b_1 =0, by #0,
NG 1 0 1 1 0 #
+exp (:I:ix + §t>
2 2
us (,1) = —— (16)
exp (:I:%x + §t> + b
Family 9
1 3
k=+—, w=—=, a_1 =0, ap = by, a1 =0, b_1 =0, b 0,
NG 5 1 0 0, a1 1 0 #
+b
ug (z,t) = 0 . (17)
1 3
exp (:I:%x — §t> + b
Family 10
1 3
k=+——, w=—-, a_1 ==xb_1, ag =0, a1 =0, bg =0, b_ 0,
53 1 1 1, g 1 0 1 #
+b_1exp (:FLJU + §t>
up (2, ) = 22 ! (18)

exp (:|:2—\1/§x — %t) +b_1exp (:F%ﬂx + %t)

Remark 1. Tascan and Bekir obtained some solutions for Cahn Allen equation by using the
first integral method [18]. When our results compare to their results, it is seem that our solution
(17) is same with their solutions u; and wg in (3.20) . (in our study, when by = 1 and in
their study, when ¢y = 0). Moreover, We have different solutions from their results by using
Exp-function method.

Example 2. The clannish random walker’s parabolic equation is derived for the motion of
the two interacting populations which tend to be clannish, which they wish to live near those of
their own kind. The equation is written as following

Up — Ugy + (uz)x —aug = 0, (19)

where « is aconstant. To investigate the traveling wave solution of the Eq. (19), we use the
transformation w (z,t) = u (), £ = kx + wt. Then Eq. (19) becomes

wu' — kKu" + 20kun’ — aku’ =0, (20)
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and integrating (20) yields, we yield following equation
wu — k*u' + aku® — aku =0, (21)
where integration constant is taken as zero. When balancing u? with u’

ciexp[(p+c)€l+...  czexp2c¢E] + ...

coexp [2p€] + ... cqexp [2p€] + ...

then gives p = c. Similarly, to determine values of d and ¢ when balancing u? with u

.dyexp[—(qg+d)¢] _ dgexp [—2d¢]
...dg exp [—2¢¢] ..dgexp[—2q€]’

then gives ¢ = d.
For simplicity, we set p=c=1and ¢ = d =1, so Eq. (4) reduces to

aj exp (&) + ap + a—1 exp (—=§)
exp (&) + bo + b—1 exp (&)

u () = : (22)

substituting Eq. (22) into Eq. (21) yields a set of algebraic equations for ag, a1, a—1, by, b_1, o, w,
k. Algebraic equations system can be expressed as following

1 (way — kaay + koa? = 0),

B
1 2
E (k:oca_l + wa_lb_l — kaa_lb_l = 0) s
1
B (k2a0 + way — kaag + 2kaaga; — k2a1by + waiby — kaaiby = 0) , (23)
1
E (2kaa_1a0 — kzaob_l + waob_1 — kaaob_l + kza_lbo + wa_1b0 — kaa_lbo = 0) s

1 2k%a_1 +wa_1 — kaa_1 + k:oca% + 2kaa_1a; — 2k*a1b—_1 +waib—_1 — kaaib_1+
B +wa0b0 — kaaobo =0 ’

where B = (e6 + by + b_le_f)z. It is solved algebraic equations system with the aid of Math-
ematica and it is obtained values ag,a1,a_1, by, b_1, , w, k. If these values substitute into Eq.
(22), we write traveling wave solutions of Eq. (19) as following

Solution 1

w=—k(k—a), a1 =0, a, =0, b_y =0, boz%, k40,

ao
t) = 24
w (1) exp (kx —k (k —a)t) + 52 24)
kao

k (cosh (k (x + at — kt)) + sinh (k (z + at — kt))) + aag
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Figure 3. Traveling wave solution of equation (19) for solution (24),
ag=—-1l,a=1kKk=-1
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Figure 4. Traveling wave solution of equation (19) for solution (24), a) t =0, b) t =1,
c)t=2,d)t=3, (ap=—-1,a=1,k=-1)

Solution 2

_ kb
w=—k(k—a), a_lzao(—% +b0>, a1 =0, by = 20l O;:QOJF 0) o £0, k40,

ao + ag (—42 + bo) exp (—kz + k (k — ) t)

ug (x,1) = .
exp (kx — —a)t)+ by + 3 exp (—kx + —a)t
o (kz — k (k = a) t) + by + 205500 exp (—ka + k (k — ) t)

(25)
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Solution 3
w=k(—2k+a), ap=0, a1 =0, b_lz%, bo =0, k 0,
a_1exp (—kx — k(—=2k + a)t)

t) = . 26

us () = Tk (—2k £ o)) + W exp (—kx — k(—2k + ) t) (26)
Solution 4

w=k(k+a), a_1 =0, ap =0, alz—g, b_1=0, k#0, a#0,
k
—Zexp(kx + k(k+a)t)
=< . 2

(B t) = o ke + k (kT a)8) + bo (27)

Solution 5
w=k(k+a), ay =0, alz—g, b_lz—O‘GO(O‘Z‘;MbO), k40, a0, ap 0,
us (z.1) —Eexp(kz+k(k+a)t)+ag (28)
5 ) = .
exp(kx+k(k+a)t)—i—bo—Wexp(—kx—k(k—i-a)t)
Solution 6
2k
w=k(2k+a), a_1 =0, ap =0, a = ——, bo=0, k#£0, a #0,
2k
—= k k(2K t
o (z.1) = “texp (kx +k (2k + a)t) (29)

exp (kx + k(2k + a)t) + b_1exp (—kz — k (2k + a)t)’
Remark 2. Ugurlu and Kaya obtained periodic solutions and soliton solutions for the clannish
random walker’s parabolic equation by using improved tanh function method [19]. The solutions
of the clannish random walker’s parabolic equation obtained in this study are different from their
solutions.

Example 3. Let’s consider Fitzhugh—Nagumo equation
Ut — Ugy —u(u—a) (1 —u) =0, (30)

where « is an arbitrary constant. Eq. (30) is an important nonlinear reaction—diffusion equation
and applied to model the transmission of nerve impulses, also used in biology and the area of
population genetics, in circuit theory. To investigate the traveling wave solution of the equation
(30), we use the transformation £ = kx + wt. Then Eq. (30) becomes

wu — k' — 1+ a)u? +u® + au =0, (31)
and when balancing u3 with u”

crexp|[(3p+c) ] + ... _ czexp [c€] + ...
co exp [4pé] + ... caexp [p&] + ...

9
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then gives p = ¢. Similarly, to determine values of d and ¢ when balancing u3 with v”

..dyexp|— (3¢ +d)¢] _ dzexp [—d¢]
...dy exp [—4g¢] ...dgexp [—q€]’

then gives ¢ = d.
For simplicity, we set p=c=1and ¢ =d =1, so Eq. (4) reduces to

aj exp (&) + ap + a—1 exp (=§)
exp (&) + by + b_1 exp (—§)

u () = : (32)

substituting Eq. (32) into Eq. (31) yields a set of algebraic equations for ag, a1,a—1,bo,b_1,w, k.
Algebraic equations system can be written as following

l(aal—a%—aa%—i-a:{’:O),

C
L3 2 2 2
C (a—l —aZ1b1 —aa® b1 +aa_1b7) = 0) ,
1 —k%ag — wag + aag — 2apa1 — 20apa; + 3a0a% + k2a1by + wairbg + 2aaiby — a%bo—
C —aa?by =0 )
2 _ _ 1272 2 2 2 9
1/ 3aZ a0 — 2a_1a0b—1 — 2aa_1a0b-1 — k“agb” | +wapb> | + aagb”; — aZ by — aaZ b+
C —|—k2a_1b_1b0 — wa—_1b_1bg + 2cca_1b_1bg =0 ’

—a2_1 — aa2_1 + 3a_1a3 + 3a2_1a1 + 4k%a_1b_1 — 2wa_1b_1 + 20ca_1b_1 — a%b_l—
—oca%b_l —2a_1a1b_1 — 2cca_1a1b_1 + 4k2a1b2_1 + 2wa1b2_1 + aa1b2_1 — 2a_1a0bg— ,
—2aa_1agbg + kzaob_lbo + wapb_1bg + 2aagb_1by — k:Za_lb% — wa_lbg + Oéa_lb% =0
(33)

Ql=

—4k%a_; — 2wa_1 + ca_q — a% — oca% —2a_1a1 — 2aa_1a71 + 3a3a1 + 3a_1a%+
— —|—4k:2a1b_1 + 2wai1b_1 + 2cea1b_1 — a%b_l — aa%b_l + k2a0b0 — wapby + 2aapgbg— ,
—2@0@1[)0 — 20&@0@1[)0 — kzzalbg + walbg + Oéalb% =0

1 —2a_1a0 — 2aa_1a0 + a% + 6a_1a0a1 + 6k2a0b_1 + 2aa0b_1 — 2@0@1[)_1 — 2aa0a1b_1—
° —3k%a_1by — 3wa_1bo + 2ca_1by — a%bo - oca%bo —2a_1a1by — 2cca_1a1bp—
—3k2a1b_1b0 + 3wa1b_1by + 2cca1b_1by + Oéaob% =0

where C' = (e6 + by + b_le_f)g. It is solved algebraic equations system with the aid of Math-
ematica and it is obtained values ag,a1,a_1, by, b_1, , w, k. If these values substitute into Eq.
(32), we write traveling wave solutions of Eq. (30) as following

Solution 1

Eo= -1 —1( 1+ 2a) =b 1 +/—4b_q + b} =0
= \/i’w_2 Oé,a—l——l,ao—2 0 -1 0], a1 =Y,

@ 7£ Oa b_17£0,

i (bo +/—4b_; + b%) +b_jexp (%w — 3 (—1+2a) t)

exp (——x + % (=14 2a) t) +bg +b_1 exp (%x - % (=14 2a) t) '

u (z,t) = (34)

N
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Figure 5. Traveling wave solution of equation (30) for solution (34),
o = —1,b0 = —1,b_1 =—1

X X
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-0.5 e

x x
-100 -50 50 100 -100 -50 50 100
-0.5 -0.5

c) d)
Figure 6. Traveling wave solution of equation (30) for solution (34), a) t =0, b) t =5,
C) t= 10, d) t= 15, (Oé = —1,b0 = —1,b_1 = —1)

Solution 2
1 1
E = —%, w=g (2a — a2) , a1 =ab_1, ag = 5 <ab0 + \/—4a2b_1 —i—oc%%) , ap =0,
@ 7£ Oa b—l #Oa
1 (aby + /—4a2b_1 +a2b2) + ab_rexp ( %z — 3 (2@—042)75
( t) 5 0 -1 0 —1€Xp V2 2
U (T, =

exp (—%x +1(2a —a?) t) +bo +b_1exp (%x —1(2a—a?) t) .
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Solution 3
k=—— = —(1 —2(1) a_1=0,a0=0,a1=1, b_1=0 —2—}-0&#0 b 750
Za w ) ) ) ) ) ) ’ ’

exp (—%x + 2 (1-2a) t)

exp (—%x + 2 (1-2a) t) —i—bo'

ug (z,t) = (36)

Remark 3. Li and Guo obtained some exact solutions for the Fitzhugh—Nagumo equation
by using the first integral method [35]. Our solutions are different solutions from Li and Guo’s
solutions.

3. Conclusions

In this paper, we apply the exp-function method with aid of Mathematica. We obtain
some solutions of Cahn Allen equation, clannish random walker’s parabolic equation and the
Fitzhugh—Nagumo equation by using the exp-function method. The method can be used to many
other nonlinear equations or coupled ones. In addition, this method is also computerizable which
allows us to perform complicated and tedious algebraic calculation on a computer.
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