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Abstract

In this paper, we present two inequalities involving the Riemann
zeta function.

Mathematics Subject Classification: 26D15

Keywords: Zeta function, inequality

1 Introduction

For any s > 1, we denote
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where I' is the gamma function. The function ¢ is called the Riemann zeta
function. In 2006, Laforgia and Natalini [1] gave an inequality that
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for all s > 1. In 2011, Sulaiman [2] gave two inequalities as follows.
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for all z,y,a > 1.

T p () TV
s(—ﬂ) < TP @ TP W) 1oy ev/aqy 2)

P q F<§+y)
P q




22 Banyat Sroysang

for all z,y,p > 1 and %+% =1.
In this paper, we present the generalizations for inequalities (1) and (2) .

2 Results

Theorem 2.1. Let o > 1 and let f, g be functions such that f,g > 1 and
f'>0. Then, for any x > 1 and for any vy,

then
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For fixed y,
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for all z.

Hence, for any y, we obtain that h, is non-decreasing, and then
hy(2%) = hy(x)

for all z > 1.
Then

for all x > 1 and for all y.
This implies the inequality (3). O
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We note on Theorem 2.1 that if both f and g are the identity function then
we obtain the inequality (1).

Theorem 2.2. Let x1,x9,...,0, > 1 and py,ps,....,pn > 1 be such that

n

Zi =1. Then
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Proof. By the definition of £ and the assumption,
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By the generalized Holder inequality,
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This implies the inequality (4). O

We note on Theorem 2.2 that if n = 2 then we obtain the inequality (2).

3 Open Problem

~1 1

In fact, we have the generalized Holder inequality for g —=—;r>1L
—, Di r
=1

In the proof of Theorem 2.2, we use the generalized Holder inequality in case
r = 1. Now, we pose a question that how to generalize inequality (4) if we use
the generalized Holder inequality in case r > 1.
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