Mathematica Aeterna, Vol. 3, 2013, no. 2, 151 - 159

ON SOME NEW I-CONVERGENT SEQUENCE SPACES

Vakeel.A.Khan

Department of Mathematics A.M.U, Aligarh-202002(INDIA) E.mail : vakhan@math.com, vakhanmaths@gmail.com

Khalid Ebadullah

Department of Mathematics A.M.U, Aligarh-202002(INDIA) E.mail : khalidebadullah@gmail.com

Abstract

In this article we introduce the sequence spaces $V_{0\sigma}^I(m,\epsilon)$ and $V_{\sigma}^I(m,\epsilon)$ and study some of the properties and inclusion relations on these spaces.

Mathematics Subject Classification: 40A05, 40A35, 40C05, 46A45

Keywords:Ideal, filter,paranorm,I-convergent,Invariant mean,monotone and solid space.

1 Introduction

.

Let, and be the sets of all natural, real and complex numbers respectively. We write

$$
\omega = \{ x = (x_k) : x_k \in \text{ or } \},
$$

the space of all real or complex sequences.

Let l_{∞}, c and c_0 denote the Banach spaces of bounded, convergent and nul sequences respectively normed by

$$
||x||_{\infty} = \sup_{k} |x_k|
$$

Let v denote the space of sequences of bounded variation, that is

$$
v = \{x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty, x_{-1} = 0\}.
$$

v is a Banach space normed by

$$
||x|| = \sum_{k=0}^{\infty} |x_k - x_{k-1}| (See [5], [7], [12], [14]).
$$

Let σ be an injection of the set of positive integers into itself having no finite orbits and T be the operator defined on l_{∞} by $T(x_k) = (x_{\sigma(k)})$.

A positive linear functional functional Φ , with $||\Phi|| = 1$, is called a σ -mean or an invariant mean if $\Phi(x) = \Phi(Tx)$ for all $x \in l_{\infty}$.

A sequence x is said to be σ -convergent, denoted by $x \in V_{\sigma}$, if $\Phi(x)$ takes the same value, called $\sigma - \lim x$, for all σ -means Φ . We have

$$
V_{\sigma} = \{x = (x_k) : \sum_{m=1}^{\infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x\},
$$

where for $m \geq 0, k > 0$

$$
t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} + \dots + x_{\sigma^m(k)}}{m+1}
$$
, and $t_{-1,k} = 0$

where $\sigma^m(k)$ denotes the mth iterate of σ at k.

In particular, if σ is the translation, a σ -mean is often called a Banach limit and V_{σ} reduces to f, the set of almost convergent sequences.(See[6],[7],[8],[14]). For certain kinds of mappings σ , every invariant mean Φ extends the limit functional on the space c of real convergent sequences, in the sense that

$$
\Phi(x) = \lim x \text{ for all } x \in c.
$$

Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -mean are equal.(cf.[1],[5],[6],[7],[8],[11],[12],[14],[15],[16]).

The notion of I-convergence was studied at the initial stage by Kostyrko^[4], Salát^[4] and Wilczynski^[4]. Later on it was studied by $\text{Šalát}[9-10]$, Tripathy^[9-10], $Ziman[9-10]$, Tripathy and Hazarika^[13] and Demirci^[2]. Here we give some preliminaries about the notion of ideal convergence.

Let X be a non empty set. Then a family of sets $I \subseteq 2^X$ (power set of X) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e $A \in I$, B⊆A⇒B∈I.

A non-empty family of sets $\mathcal{L} \subseteq 2^X$ is said to be filter on X if and only if $\phi \notin \mathcal{L}(I)$, for A, B $\in \mathcal{L}(I)$ we have A \cap B $\in \mathcal{L}(I)$ and for each A $\in \mathcal{L}(I)$ and A \subseteq B implies $B \in \mathcal{L}(I)$.

An ideal I $\subseteq 2^X$ is called non-trivial if I $\neq 2^X$.

A non-trivial ideal I $\subseteq 2^X$ is called admissible if $\{\{x\} : x \in X\} \subseteq I$.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J\neq I$ containing I as a subset.

For each ideal I, there is a filter $\mathcal{L}(I)$ corresponding to I. i.e $\mathcal{L}(I) = \{K \subseteq: K^c \in I\}$, where $K^c = -K$ (See.[13]).

Definition.1.1 A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{k \in N : |x_k - L| \geq \epsilon\} \in I$. In this case we write $I-\lim x_k = L$.

The space c^I of all I-convergent sequences to L is given by

 $c^I = \{(x_k) \in \omega : \{k \in : |x_k - L| \ge \epsilon\} \in I, \text{for some } L \in \}$ (See.[4],[9],[10]).

Definition.1.2 A sequence $(x_k) \in \omega$ is said to be I-null if $L = 0$. In this case we write $I - \lim x_k = 0$. The space c_0^I of I-null sequences is given by

$$
c_0^I = \{(x_k) \in \omega : \{k \in : |x_k| \ge \epsilon\} \in I, \}(\text{See.}[4],[9],[10]).
$$

Definition.1.3 A sequence $(x_k) \in \omega$ is said to be I-Cauchy if for every $\epsilon > 0$ there exists a number m = m(ϵ) such that $\{k \in |x_k - x_m| \geq \epsilon\} \in \text{I.}$ (See.[13]).

Definition.1.4 A sequence $(x_k) \in \omega$ is said to be I-bounded if there exists $M > 0$ such that $\{k \in |x_k| > M\}$ (See.[13]).

Definition.1.5 A sequence space E is said to be solid or normal if $(x_k) \in$ E implies $(\alpha_k x_k) \in E$ for all sequence of scalars (α_k) with $|\alpha_k| < 1$ for all $k \in$ (See.[13]).

Definition.1.6 A sequence space E is said to be monotone if it contains the cannonical preimages of all its stepspaces.(See[13]).

The following result will be used for establishing some results of this article

Lemma.1.7 The sequence space E is solid implies that E is monotone. (See [3, p.53]).

The motivation for this paper comes from the study of [1-16] and here we generalise the notion of the σ −mean using I-convegence.

2 Main Results

In this article we introduce the following classes of sequence spaces.

Let
$$
x = (x_k) \in \omega
$$
,
\n
$$
V_{0\sigma}^I(m, \epsilon) = \{(x_k) \in \omega : (\forall m)(\exists \epsilon > 0) \{k \in : |t_{m,k}(x)| \ge \epsilon\} \in I\},
$$
\n
$$
V_{\sigma}^I(m, \epsilon) = \{(x_k) \in \omega : (\forall m)(\exists \epsilon > 0) \{k \in : |t_{m,k}(x) - L| \ge \epsilon\} \in I, \text{for some } L \in \}.
$$

Theorem 2.1. $V^I_{\sigma}(m, \epsilon)$ and $V^I_{0\sigma}(m, \epsilon)$ are linear spaces.

Proof: Let (x_k) , $(y_k) \in V^I_{\sigma}(m, \epsilon)$ and α, β be two scalars. Then for a given $\epsilon > 0$,

we have

$$
A_1 = \{k \in : |t_{m,k}(x) - L_1| < \frac{\epsilon}{2}\} \in I, \text{for some } L_1 \in \}
$$
\n
$$
A_2 = \{k \in : |t_{m,k}(y) - L_2| < \frac{\epsilon}{2}\} \in I, \text{for some } L_2 \in \}
$$

Then

$$
A_1^c = \{k \in |t_{m,k}(x) - L_1| \ge \frac{\epsilon}{2}\} \in I, \text{for some } L_1 \in \}
$$

$$
A_2^c = \{k \in |t_{m,k}(y) - L_2| \ge \frac{\epsilon}{2}\} \in I, \text{for some } L_2 \in \}
$$

Now let,

$$
A_3 = \{ k \in : |(\alpha t_{m,k}(x) + \beta t_{m,k}(y)) - (\alpha L_1 + \beta L_2)| < \epsilon \}
$$

$$
\supseteq \{ k \in : |\alpha| | t_{m,k}(x) - L_1| < \epsilon \} \cap \{ k \in : |\beta| | t_{m,k}(y) - L_2| < \epsilon \}
$$

Thus $A_3^c = A_1^c \cap A_2^c \in I$. Hence $(\alpha(x_k) + \beta(y_k)) \in V^I_{\sigma}(m, \epsilon).$ Therefore $V^I_{\sigma}(m,\epsilon)$ is a linear space. The rest of the result follow similarly.

Theorem 2.2. The spaces $V_{0\sigma}^I(m,\epsilon)$ and $V_{\sigma}^I(m,\epsilon)$ are normed linear spaces,normed by

$$
||x_k||_* = \sup_{m,k} |t_{m,k}(x)|.
$$
 (A).

Proof: It is clear from from theorem 2.1 that $V_{0\sigma}^I(m, \epsilon)$ and $V_{\sigma}^I(m, \epsilon)$ are linear spaces.

It is easy to verify that (A) defines a norm on the spaces $V_{0\sigma}^I(m,\epsilon)$ and $V_{\sigma}^I(m,\epsilon)$.

Theorem 2.3. $V^I_{\sigma}(m,\epsilon)$ is a closed subspace of l_{∞} .

Proof. Let $(x_k^{(n)})$ $k^{(n)}$) be a cauchy sequence in $V^I_{\sigma}(m, \epsilon)$ such that $x^{(n)} \to x$. We show that $x \in V^I_\sigma(m, \epsilon)$. Since $(x_k^{(n)})$ $(k_n^{(n)}) \in V^I_{\sigma}(m, \epsilon)$, then there exists a_n such that

$$
\{k \in : |t_{m,k}(x^{(n)}) - a_n| \ge \epsilon\} \in I.
$$

We need to show that

 $(1)(a_n)$ converges to a. (2)If $U = \{k \in |x_k - a| < \epsilon\}$, then $U^c \in I$.

(1) Since $(x_k^{(n)}$ $\binom{n}{k}$ is a cauchy sequence in $V^I_{\sigma}(m, \epsilon)$ then for a given $\epsilon > 0$, there exists $k_0 \in \text{such that}$

$$
\sup_{m,k} |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}, \text{for all } n, i \ge k_0
$$

For a given $\epsilon > 0$, we have

$$
B_{ni} = \{k \in \, |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}\}
$$
\n
$$
B_i = \{k \in \, |t_{m,k}(x_k^{(i)}) - a_i| < \frac{\epsilon}{3}\}
$$
\n
$$
B_n = \{k \in \, |t_{m,k}(x_k^{(n)}) - a_n| < \frac{\epsilon}{3}\}
$$

Then $B_{ni}^c, B_i^c, B_n^c \in I$. Let $B^c = B_{ni}^c \cap B_i^c \cap B_n^c$, where $B = \{k \in |a_i - a_n| < \epsilon\}.$ Then $B^c \in I$. We choose $k_0 \in B^c$, then for each $n, i \geq k_0$, we have

$$
\{k \in |a_i - a_n| < \epsilon\} \supseteq \{k \in |t_{m,k}(x_k^{(i)}) - a_i| < \frac{\epsilon}{3}\}
$$
\n
$$
\bigcap \{k \in |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}\}
$$
\n
$$
\bigcap \{k \in |t_{m,k}(x_k^{(n)}) - a_n| < \frac{\epsilon}{3}\}
$$

Then (a_n) is a cauchy sequence of scalars in, so there exists a scalar $a \in \text{such}$ that $(a_n) \to a$, as $n \to \infty$.

(2) Let $0 < \delta < 1$ be given. Then we show that if $U = \{k \in \mathbb{R} | t_{m,k}(x) - a \}$ δ}, then U^c ∈ I.

Since $t_{m,k}(x^{(n)}) \to t_{m,k}(x)$, then there exists $q_0 \in \text{such that}$

$$
P = \{k \in : |t_{m,k}(x^{(q_0)} - t_{m,k}(x)| < \frac{\delta}{3}\}\tag{1}
$$

which implies that $P^c \in I$

The number q_0 can be so choosen that together with (1), we have

$$
Q = \{ k \in : |a_{q_0} - a| < \frac{\delta}{3} \}
$$

such that $Q^c \in I$

Since $\{k \in \mathbb{N} | t_{m,k}(x_k^{(q_0)})\}$ $\binom{(q_0)}{k} - a_{q_0} \ge \delta$ $\in I$. Then we have a subset S of such that $S^c \in I$, where

$$
S = \{k \in : |t_{m,k}(x_k^{(q_0)}) - a_{q_0}| < \frac{\delta}{3}\}.
$$

Let $U^c = P^c \cap Q^c \cap S^c$, where $U = \{k \in |t_{m,k}(x) - a| < \delta\}.$ Therefore for each $k \in U^c$, we have

$$
\{k \in \mathbb{N} \mid t_{m,k}(x) - a| < \delta\} \supseteq \{k \in \mathbb{N} \mid t_{m,k}(x^{(q_0)} - t_{m,k}(x)| < \frac{\delta}{3}\}
$$
\n
$$
\bigcap \{k \in \mathbb{N} \mid t_{m,k}(x_k^{(q_0)}) - a_{q_0}| < \frac{\delta}{3}\}
$$
\n
$$
\bigcap \{k \in \mathbb{N} \mid a_{q_0} - a| < \frac{\delta}{3}\}
$$

Then the result follows.

Since the inclusions $V_{0\sigma}^I(m,\epsilon) \subset l_\infty$ and $V_{\sigma}^I(m,\epsilon) \subset l_\infty$ are strict so in view of Theorem 2.3 we have the following result.

Theorem 2.4. The spaces $V_{0\sigma}^I(m,\epsilon)$ and $V_{\sigma}^I(m,\epsilon)$ are nowhere dense subsets of l_{∞} .

Theorem 2.5. The space $V_{0\sigma}^I(m,\epsilon)$ is solid and monotone.

Proof. Let $(x_k) \in V^I_{0\sigma}(m, \epsilon)$ and α_k be a sequence of scalars with $|\alpha_k| \leq 1$, for all $k \in$

Then we have $|\alpha_k t_{m,k}(x)| \leq |\alpha_k| |t_{m,k}(x)| \leq |t_{m,k}(x)|$, for all $k \in$ The space $V_{0\sigma}^I(m,\epsilon)$ is solid follows from the following inclusion relation.

$$
\{k \in \mathbb{N} \mid t_{m,k}(x) \geq \epsilon\} \supseteq \{k \in \mathbb{N} \mid \alpha_k t_{m,k}(x) \geq \epsilon\}.
$$

Also a sequence space is solid implies monotone. Hence the space $V_{0\sigma}^I(m,\epsilon)$ is monotone.

Theorem 2.6. The inclusions $c_0^I \subset V_{0\sigma}^I(m, \epsilon) \subset l_{\infty}$ are proper.

Proof. Let $x = (x_k) \in c_0^I$. Then we have $\{k \in |x_k| \geq \epsilon\} \in I$ Since $c_0 \subset V_{0\sigma}(m,\epsilon)$ $x = (x_k) \in V_{0\sigma}^I$ implies $\{k \in : |t_{m,k}(x)| \geq \epsilon\} \in I$ Now let, $A_1 = \{k \in |x_k| < \epsilon\} \in I$

$$
A_2 = \{ k \in : |t_{m,k}(x)| < \epsilon \} \in I
$$

be such that $A_1^c, A_2^c \in I$.

As $l_{\infty} = \{x = (x_k) : \sup_k |x_k| < \infty\}$, taking supremum over k we get $A_1^c \subset A_2^c$. Hence $c_0^I \subset V^I_{0\sigma}(m,\epsilon) \subset l_\infty$.

Theorem 2.7. The inclusions $c^I \subset V^I_{\sigma}(m, \epsilon) \subset l_{\infty}$ are proper.

Proof. Let $x = (x_k) \in c^I$. Then we have $\{k \in |x_k - L| \geq \epsilon\} \in I$ Since $c \subset V_{\sigma}(m,\epsilon) \subset l_{\infty}$ $x = (x_k) \in V^I_{\sigma}(m, \epsilon)$ implies $\{k \in : |t_{m,k}(x) - L| \ge \epsilon\} \in I$ Now let, $B = \{k \in \mathbb{R}^n : |x_k = L| < \epsilon\} \subseteq I$

$$
D_1 - \{ \kappa \in \mathbb{R} \mid x_k - L \} < \epsilon \} \in I
$$
\n
$$
B_2 = \{ k \in \mathbb{R} \mid t_{m,k}(x) - L \mid < \epsilon \} \in I
$$

be such that $B_1^c, B_2^c \in I$. As $l_{\infty} = \{x = (x_k) : \sup_k |x_k| < \infty\}$, taking supremum over k we get $B_1^c \subset B_2^c$. Hence $c^I \subset V^I_\sigma(m,\epsilon) \subset l_\infty$.

ACKNOWLEDGEMENTS. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] Ahmad,Z.U.,Mursaleen,M.: An application of Banach limits.Proc.Amer. Math. Soc. 103,244-246,(1983).

- [2] Demirci,K. I-limit superior and limit inferior.Math. Commun.,6: 165-172(2001).
- [3] Kamthan,P.K and Gupta,M. Sequence spaces and series.Marcel Dekker Inc,New York.(1980)
- [4] Kostyrko, P., Šalát, T., Wilczyński, W.I-convergence. Real Analysis $\textit{Exchange}, 26(2): 669-686(2000).$
- [5] Lorentz,G.G.: A contribution to the theory of divergent series.Acta Math., 80: 167-190 (1948).
- [6] Mursaleen,M.: Matrix transformation between some new sequence spaces.Houston J. Math.,9: 505-509(1983).
- [7] Mursaleen,M.: On some new invariant matrix methods of summability.Quart. J. Math. Oxford,(2)34: 77-86(1983).
- [8] Raimi,R.A.: Invariant means and invariant matrix methods of summability.Duke J. Math.,30: 81-94(1963).
- [9] $\text{Šalát}, \text{T.}, \text{Tripathy}, \text{B.C.,Ziman}, \text{M.}$ On some properties of Iconvergence.Tatra Mt. Math. Publ.,28: 279-286(2004).
- [10] Salát,T.,Tripathy,B.C.,Ziman,M. On I-convergence field.Ital.J.Pure Appl. Math.,17: 45-54(2005).
- [11] Savas,E.,Rhoades,B.E. On some new sequence spaces of invariant means defined by Orlicz functions.Math. Ineq. Appl.,5(2): 271- 281(2002).
- [12] Schafer,P.: Infinite matrices and Invariant means.Proc.Amer. Math. Soc.36,104-110,(1972).
- [13] Tripathy,B.C,Hazarika,B.: Paranorm I-convergent sequence spaces.Math. Slovaca59(4):485-494(2009).
- [14] Vakeel,A.K.: On a new sequence space defined by Orlicz Functions.Commun.Fac.Sci Univ.Ank.Series A1.57,25-33,(2008).
- [15] Vakeel A. Khan, Khalid Ebadullah and Suthep Suantai , : On A New I-convergent sequence space, Analysis, International mathematical journal of analysis and its applications, 32(3),199-208, (2012).
- [16] Wilansky,A.:Summability through Functional Analysis.North-Holland Mathematical Studies.85,(1984).

Received: February, 2013