Mathematica Aeterna, Vol. 3, 2013, no. 2, 151 - 159

ON SOME NEW I-CONVERGENT SEQUENCE SPACES

Vakeel.A.Khan

Department of Mathematics A.M.U, Aligarh-202002(INDIA) E.mail : vakhan@math.com, vakhanmaths@gmail.com

Khalid Ebadullah

Department of Mathematics A.M.U, Aligarh-202002(INDIA) E.mail : khalidebadullah@gmail.com

Abstract

In this article we introduce the sequence spaces $V_{0\sigma}^{I}(m,\epsilon)$ and $V_{\sigma}^{I}(m,\epsilon)$ and study some of the properties and inclusion relations on these spaces.

Mathematics Subject Classification: 40A05, 40A35, 40C05, 46A45

Keywords:Ideal, filter, paranorm, I-convergent, Invariant mean, monotone and solid space.

1 Introduction

.

Let , and be the sets of all natural, real and complex numbers respectively. We write

$$\omega = \{ x = (x_k) : x_k \in or \},\$$

the space of all real or complex sequences.

Let l_{∞}, c and c_0 denote the Banach spaces of bounded, convergent and nul sequences respectively normed by

$$||x||_{\infty} = \sup_{k} |x_k|$$

Let v denote the space of sequences of bounded variation , that is

$$v = \{x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty, x_{-1} = 0\}.$$

v is a Banach space normed by

$$||x|| = \sum_{k=0}^{\infty} |x_k - x_{k-1}| (See[5], [7], [12], [14])$$

Let σ be an injection of the set of positive integers into itself having no finite orbits and T be the operator defined on l_{∞} by $T(x_k) = (x_{\sigma(k)})$.

A positive linear functional functional Φ , with $||\Phi|| = 1$, is called a σ -mean or an invariant mean if $\Phi(x) = \Phi(Tx)$ for all $x \in l_{\infty}$.

A sequence x is said to be σ -convergent, denoted by $x \in V_{\sigma}$, if $\Phi(x)$ takes the same value, called $\sigma - \lim x$, for all σ -means Φ . We have

$$V_{\sigma} = \{x = (x_k) : \sum_{m=1}^{\infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x\},\$$

where for $m \ge 0, k > 0$

$$t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} + \dots + x_{\sigma^m(k)}}{m+1}$$
, and $t_{-1,k} = 0$

where $\sigma^m(k)$ denotes the mth iterate of σ at k.

In particular, if σ is the translation, a σ -mean is often called a Banach limit and V_{σ} reduces to f, the set of almost convergent sequences. (See[6],[7],[8],[14]). For certain kinds of mappings σ , every invariant mean Φ extends the limit functional on the space c of real convergent sequences, in the sense that

$$\Phi(x) = \lim x$$
 for all $x \in c$.

Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -mean are equal.(cf.[1],[5],[6],[7],[8],[11],[12],[14],[15],[16]).

The notion of I-convergence was studied at the initial stage by Kostyrko[4],Salát[4] and Wilczyński[4]. Later on it was studied by Šalát[9-10], Tripathy[9-10], Ziman[9-10],Tripathy and Hazarika[13] and Demirci[2].Here we give some preliminaries about the notion of ideal convergence.

Let X be a non empty set. Then a family of sets $I \subseteq 2^X$ (power set of X) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e $A \in I$,

 $B \subseteq A \Rightarrow B \in I.$

A non-empty family of sets $\pounds \subseteq 2^X$ is said to be filter on X if and only if $\phi \notin \pounds(I)$, for $A, B \in \pounds(I)$ we have $A \cap B \in \pounds(I)$ and for each $A \in \pounds(I)$ and $A \subseteq B$ implies $B \in \pounds(I)$.

An ideal I $\subseteq 2^X$ is called non-trivial if I $\neq 2^X$.

A non-trivial ideal $I \subseteq 2^X$ is called admissible if $\{\{x\} : x \in X\} \subseteq I$.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I, there is a filter $\pounds(I)$ corresponding to I. i.e $\pounds(I) = \{K \subseteq : K^c \in I\}$, where $K^c = -K$ (See.[13]).

Definition.1.1 A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{k \in N : |x_k - L| \ge \epsilon\} \in I$. In this case we write $I - \lim x_k = L$.

The space c^{I} of all I-convergent sequences to L is given by

 $c^{I} = \{(x_{k}) \in \omega : \{k \in |x_{k} - L| \ge \epsilon\} \in I, \text{ for some } L \in \}(\text{See.}[4], [9], [10]).$

Definition.1.2 A sequence $(x_k) \in \omega$ is said to be I-null if L = 0. In this case we write $I - \lim x_k = 0$. The space c_0^I of I-null sequences is given by

 $c_0^I = \{(x_k) \in \omega : \{k \in |x_k| \ge \epsilon\} \in I, \}$ (See.[4],[9],[10]).

Definition.1.3 A sequence $(x_k) \in \omega$ is said to be I-Cauchy if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ such that $\{k \in |x_k - x_m| \ge \epsilon\} \in I.(See.[13]).$

Definition.1.4 A sequence $(x_k) \in \omega$ is said to be I-bounded if there exists M >0 such that $\{k \in |x_k| > M\}$ (See.[13]).

Definition.1.5 A sequence space E is said to be solid or normal if $(x_k) \in$ E implies $(\alpha_k x_k) \in$ E for all sequence of scalars (α_k) with $|\alpha_k| < 1$ for all $k \in .(\text{See}.[13]).$

Definition.1.6 A sequence space E is said to be monotone if it contains the cannonical preimages of all its stepspaces. (See[13]).

The following result will be used for establishing some results of this article

Lemma.1.7The sequence space E is solid implies that E is monotone. (See[3,p.53]).

The motivation for this paper comes from the study of [1-16] and here we generalise the notion of the σ -mean using I-convegence.

2 Main Results

In this article we introduce the following classes of sequence spaces.

Let
$$x = (x_k) \in \omega$$
,
 $V_{0\sigma}^I(m, \epsilon) = \{(x_k) \in \omega : (\forall m)(\exists \epsilon > 0) \{k \in : |t_{m,k}(x)| \ge \epsilon\} \in I\},$
 $V_{\sigma}^I(m, \epsilon) = \{(x_k) \in \omega : (\forall m)(\exists \epsilon > 0) \{k \in : |t_{m,k}(x) - L| \ge \epsilon\} \in I, \text{ for some } L \in \}.$

Theorem 2.1. $V_{\sigma}^{I}(m, \epsilon)$ and $V_{0\sigma}^{I}(m, \epsilon)$ are linear spaces.

Proof: Let $(x_k), (y_k) \in V_{\sigma}^I(m, \epsilon)$ and α, β be two scalars. Then for a given $\epsilon > 0$,

$$A_1 = \{k \in : |t_{m,k}(x) - L_1| < \frac{\epsilon}{2}\} \in I, \text{ for some } L_1 \in \}$$
$$A_2 = \{k \in : |t_{m,k}(y) - L_2| < \frac{\epsilon}{2}\} \in I, \text{ for some } L_2 \in \}$$

Then

$$A_1^c = \{k \in : |t_{m,k}(x) - L_1| \ge \frac{\epsilon}{2}\} \in I, \text{ for some } L_1 \in \}$$
$$A_2^c = \{k \in : |t_{m,k}(y) - L_2| \ge \frac{\epsilon}{2}\} \in I, \text{ for some } L_2 \in \}$$

Now let,

$$A_{3} = \{k \in : |(\alpha t_{m,k}(x) + \beta t_{m,k}(y)) - (\alpha L_{1} + \beta L_{2})| < \epsilon\}$$
$$\supseteq \{k \in : |\alpha| |t_{m,k}(x) - L_{1}| < \epsilon\} \cap \{k \in : |\beta| |t_{m,k}(y) - L_{2}| < \epsilon\}$$

Thus $A_3^c = A_1^c \cap A_2^c \in I$. Hence $(\alpha(x_k) + \beta(y_k)) \in V_{\sigma}^I(m, \epsilon)$. Therefore $V_{\sigma}^I(m, \epsilon)$ is a linear space. The rest of the result follow similarly. **Theorem 2.2.** The spaces $V_{0\sigma}^{I}(m, \epsilon)$ and $V_{\sigma}^{I}(m, \epsilon)$ are normed linear spaces, normed by

$$||x_k||_* = \sup_{m,k} |t_{m,k}(x)|.$$
 (A).

Proof: It is clear from from theorem 2.1 that $V_{0\sigma}^{I}(m, \epsilon)$ and $V_{\sigma}^{I}(m, \epsilon)$ are linear spaces.

It is easy to verify that (A) defines a norm on the spaces $V_{0\sigma}^{I}(m,\epsilon)$ and $V_{\sigma}^{I}(m,\epsilon)$.

Theorem 2.3. $V_{\sigma}^{I}(m, \epsilon)$ is a closed subspace of l_{∞} .

Proof. Let $(x_k^{(n)})$ be a cauchy sequence in $V_{\sigma}^I(m, \epsilon)$ such that $x^{(n)} \to x$. We show that $x \in V_{\sigma}^I(m, \epsilon)$. Since $(x_k^{(n)}) \in V_{\sigma}^I(m, \epsilon)$, then there exists a_n such that

$$\{k \in : |t_{m,k}(x^{(n)}) - a_n| \ge \epsilon\} \in I.$$

We need to show that

 $(1)(a_n)$ converges to a.

(2) If $U = \{k \in : |x_k - a| < \epsilon\}$, then $U^c \in I$.

(1) Since $(x_k^{(n)})$ is a cauchy sequence in $V_{\sigma}^I(m, \epsilon)$ then for a given $\epsilon > 0$, there exists $k_0 \in$ such that

$$\sup_{m,k} |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}, \text{ for all } n, i \ge k_0$$

For a given $\epsilon > 0$, we have

$$B_{ni} = \{k \in : |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}\}$$
$$B_i = \{k \in : |t_{m,k}(x_k^{(i)}) - a_i| < \frac{\epsilon}{3}\}$$
$$B_n = \{k \in : |t_{m,k}(x_k^{(n)}) - a_n| < \frac{\epsilon}{3}\}$$

Then $B_{ni}^c, B_i^c, B_n^c \in I$. Let $B^c = B_{ni}^c \cap B_i^c \cap B_n^c$, where $B = \{k \in : |a_i - a_n| < \epsilon\}$. Then $B^c \in I$. We choose $k_0 \in B^c$, then for each $n, i \ge k_0$, we have

$$\{k \in : |a_i - a_n| < \epsilon\} \supseteq \{k \in : |t_{m,k}(x_k^{(i)}) - a_i| < \frac{\epsilon}{3}\}$$
$$\cap \{k \in : |t_{m,k}(x_k^{(n)}) - t_{m,k}(x_k^{(i)})| < \frac{\epsilon}{3}\}$$
$$\cap \{k \in : |t_{m,k}(x_k^{(n)}) - a_n| < \frac{\epsilon}{3}\}$$

Then (a_n) is a cauchy sequence of scalars in , so there exists a scalar $a \in$ such that $(a_n) \to a$, as $n \to \infty$.

(2) Let $0 < \delta < 1$ be given. Then we show that if $U = \{k \in |t_{m,k}(x) - a| < 0\}$ δ , then $U^c \in I$.

Since $t_{m,k}(x^{(n)}) \to t_{m,k}(x)$, then there exists $q_0 \in$ such that

$$P = \{k \in : |t_{m,k}(x^{(q_0)} - t_{m,k}(x)| < \frac{\delta}{3}\}$$
(1)

which implies that $P^c \in I$

The number q_0 can be so choosen that together with (1), we have

$$Q = \{k \in : |a_{q_0} - a| < \frac{\delta}{3}\}$$

such that $Q^c \in I$ Since $\{k \in : |t_{m,k}(x_k^{(q_0)}) - a_{q_0}| \ge \delta\} \in I$. Then we have a subset S of such that $S^c \in I$, where

$$S = \{k \in : |t_{m,k}(x_k^{(q_0)}) - a_{q_0}| < \frac{\delta}{3}\}.$$

Let $U^c = P^c \cap Q^c \cap S^c$, where $U = \{k \in : |t_{m,k}(x) - a| < \delta\}$. Therefore for each $k \in U^c$, we have

$$\{k \in : |t_{m,k}(x) - a| < \delta\} \supseteq \{k \in : |t_{m,k}(x^{(q_0)} - t_{m,k}(x)| < \frac{\delta}{3}\}$$
$$\cap \{k \in : |t_{m,k}(x^{(q_0)}_k) - a_{q_0}| < \frac{\delta}{3}\}$$
$$\cap \{k \in : |a_{q_0} - a| < \frac{\delta}{3}\}$$

Then the result follows.

Since the inclusions $V_{0\sigma}^{I}(m,\epsilon) \subset l_{\infty}$ and $V_{\sigma}^{I}(m,\epsilon) \subset l_{\infty}$ are strict so in view of Theorem 2.3 we have the following result.

Theorem 2.4. The spaces $V^{I}_{0\sigma}(m,\epsilon)$ and $V^{I}_{\sigma}(m,\epsilon)$ are nowhere dense subsets of l_{∞} .

Theorem 2.5. The space $V_{0\sigma}^{I}(m, \epsilon)$ is solid and monotone.

Proof. Let $(x_k) \in V_{0\sigma}^I(m, \epsilon)$ and α_k be a sequence of scalars with $|\alpha_k| \leq 1$, for all $k \in$

Then we have $|\alpha_k t_{m,k}(x)| \leq |\alpha_k| |t_{m,k}(x)| \leq |t_{m,k}(x)|$, for all $k \in$ The space $V_{0\sigma}^{I}(m,\epsilon)$ is solid follows from the following inclusion relation.

$$\{k \in : |t_{m,k}(x)| \ge \epsilon\} \supseteq \{k \in : |\alpha_k t_{m,k}(x)| \ge \epsilon\}.$$

Also a sequence space is solid implies monotone. Hence the space $V_{0\sigma}^{I}(m, \epsilon)$ is monotone.

Theorem 2.6. The inclusions $c_0^I \subset V_{0\sigma}^I(m, \epsilon) \subset l_{\infty}$ are proper.

Proof. Let $x = (x_k) \in c_0^I$. Then we have $\{k \in : |x_k| \ge \epsilon\} \in I$ Since $c_0 \subset V_{0\sigma}(m, \epsilon)$ $x = (x_k) \in V_{0\sigma}^I$ implies $\{k \in : |t_{m,k}(x)| \ge \epsilon\} \in I$ Now let, $A_1 = \{k \in : |x_k| < \epsilon\} \in I$

$$A_2 = \{k \in : |t_{m,k}(x)| < \epsilon\} \in I$$

be such that $A_1^c, A_2^c \in I$.

As $l_{\infty} = \{x = (x_k) : \sup_k |x_k| < \infty\}$, taking supremum over k we get $A_1^c \subset A_2^c$. Hence $c_0^I \subset V_{0\sigma}^I(m, \epsilon) \subset l_{\infty}$.

Theorem 2.7. The inclusions $c^I \subset V^I_{\sigma}(m, \epsilon) \subset l_{\infty}$ are proper.

Proof. Let $x = (x_k) \in c^I$. Then we have $\{k \in : |x_k - L| \ge \epsilon\} \in I$ Since $c \subset V_{\sigma}(m, \epsilon) \subset l_{\infty}$ $x = (x_k) \in V_{\sigma}^I(m, \epsilon)$ implies $\{k \in : |t_{m,k}(x) - L| \ge \epsilon\} \in I$ Now let, $B_i = \{k \in : |x_i - L| \le \epsilon\} \in I$

$$B_1 = \{k \in : |x_k - L| < \epsilon\} \in I$$
$$B_2 = \{k \in : |t_{m,k}(x) - L| < \epsilon\} \in I$$

be such that $B_1^c, B_2^c \in I$. As $l_{\infty} = \{x = (x_k) : \sup_k |x_k| < \infty\}$, taking supremum over k we get $B_1^c \subset B_2^c$. Hence $c^I \subset V_{\sigma}^I(m, \epsilon) \subset l_{\infty}$.

ACKNOWLEDGEMENTS. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] Ahmad,Z.U.,Mursaleen,M.: An application of Banach limits.*Proc.Amer. Math. Soc.* 103,244-246,(1983).

- [2] Demirci,K. I-limit superior and limit inferior. *Math. Commun.*,6: 165-172(2001).
- [3] Kamthan, P.K and Gupta, M. Sequence spaces and series. Marcel Dekker Inc, New York. (1980)
- [4] Kostyrko, P., Šalát, T., Wilczyński, W.I-convergence. *Real Analysis Exchange*, 26(2): 669-686(2000).
- [5] Lorentz,G.G.: A contribution to the theory of divergent series. Acta Math., 80: 167-190(1948).
- [6] Mursaleen, M.: Matrix transformation between some new sequence spaces. *Houston J. Math.*, 9: 505-509(1983).
- [7] Mursaleen, M.: On some new invariant matrix methods of summability. Quart. J. Math. Oxford, (2)34: 77-86(1983).
- [8] Raimi,R.A.: Invariant means and invariant matrix methods of summability. *Duke J. Math.*, 30: 81-94(1963).
- [9] Šalát, T., Tripathy, B.C., Ziman, M. On some properties of Iconvergence. *Tatra Mt. Math. Publ.*, 28: 279-286(2004).
- [10] Salát, T., Tripathy, B.C., Ziman, M. On I-convergence field. Ital. J. Pure Appl. Math., 17: 45-54(2005).
- [11] Savas, E., Rhoades, B.E. On some new sequence spaces of invariant means defined by Orlicz functions. *Math. Ineq. Appl.*, 5(2): 271-281(2002).
- [12] Schafer, P.: Infinite matrices and Invariant means. Proc. Amer. Math. Soc. 36, 104-110, (1972).
- [13] Tripathy,B.C,Hazarika,B.: Paranorm I-convergent sequence spaces. *Math. Slovaca*59(4):485-494(2009).
- [14] Vakeel, A.K.: On a new sequence space defined by Orlicz Functions. Commun. Fac. Sci Univ. Ank. Series A1.57, 25-33, (2008).

- [15] Vakeel A. Khan, Khalid Ebadullah and Suthep Suantai, : On A New I-convergent sequence space, Analysis, International mathematical journal of analysis and its applications, 32(3),199-208, (2012).
- [16] Wilansky, A.: Summability through Functional Analysis. North-Holland Mathematical Studies. 85, (1984).

Received: February, 2013