

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl:4 Sayı:7 Bahar 2005/1 s.123-140

123

EVALUATION OF ACTIVE QUEUE MANAGEMENT
ALGORITHMS

Serhat ÖZEKES*

ABSTRACT
Active Queue Management (AQM) is a very active research area in networking flows. In order to stem the

increasing packet loss rates caused by an exponential increase in network traffic, researchers have been

considering the deployment of active queue management algorithms. In this paper we will evaluate the active

queue management algorithms such as Droptail, RED, BLUE, REM, GREEN and PURPLE. The algorithms

selected from amongst the many published over the past ten years, will be described in a simplified manner.

Strengthness and weakness of these algorithms will be discussed.

Keywords: AQM, QoS, ECN, Droptail, RED, BLUE, REM, GREEN, PURPLE

AKTİF KUYRUK YÖNETİM ALGORİTMALARININ DEĞERLENDİRİLMESİ

ÖZET
Aktif kuyruk yönetimi, ağ trafiğinin düzenlenmesinde güncel bir araştırma konusudur. Ağ trafiğindeki paket

kayıplarının artışının önlenmesi için araştırmacılar çalışmalarında aktif kuyruk yönetim algoritmalarına ağırlık

vermektedirler. Bu çalışmada Droptail, RED, BLUE, REM, GREEN ve PURPLE gibi aktif kuyruk yönetim

algoritmaları değerlendirilecektir. Bu konu üzerinde yapılmış çalışmalardan seçilen algoritmalar özet bir

şekilde açıklanacaktır. Bu algoritmaların güçlü ve zayıf yanları tartışılacaktır.

Anahtar Kelimeler: AQM, QoS, ECN, Droptail, RED, BLUE, REM, GREEN, PURPLE

* Istanbul Commerce University, Vocational School, Uskudar – ISTANBUL, serhat@iticu.edu.tr

Serhat Özekes

 124

1. INTRODUCTION

Increasing access to data communications is creating sweeping changes around the

globe. More people are using a wider range of services, requiring more data to be

transported. As a result, there has been a surge of interest in designing low-loss and low-

delay networks by encouraging users to adapt to changing networks conditions using

minimal information from the network.

Ultimately the performance of a communications network will be judged by the Quality

of Service (QoS) perceived by users. This end user QoS can be affected by many factors

outside of the control of the network operators. For example, the quality of an MPEG-1

video stream, which has very limited error suppression capabilities, will be perceptibly

lower than that of a video service with error suppression and correction capabilities

built-in after both streams have been transported across an inherently lossy network like

the Internet. The differences in the perceived quality will obviously be affected by the

performance of the transport network, but the main differences will come from the

nature of the service being transported (Neame, 2003).

Aggregate queuing delay or latency is the amount of time it takes the senders packet,

once it enters the network, to be delivered to its destination. Figure 1 shows a single

sender-receiver connection. A packet is a form of data in a sequence of binary digits in a

packet-switched network. Transmission Control Protocol (TCP) divides a file into

efficient sized packets that are separately numbered. A simple packet contains an IP

header, packet number protocol, source address (TCP sender), destination Internet

address, and data. The TCP sends the packet into the network where it is then routed

through various links and hubs. Each link is connected to a hub server that routes

packets through routers and switches that have a queue size and possibly a different

algorithm for handling queue congestion. The hub server’s router and switches take

input links and route the packets to the appropriate output link. When a packet enters a

hub server, it will be placed into a routers queue when there is congestion. If there is no

congestion the packet will be sent immediately with virtually zero delay. Depending on

the length of the queue and where the packet was placed in the queue determines the

amount of the time it will reside in queue until it is sent. Once all the packets have

arrived to its destination, the TCP receiver will reassemble the file in the receiver TCP

by putting the packets in-order and assembling the data back into a file (Manley, 2003).

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 125

Figure 1. A single sender-receiver connection (Hollot, 2002).

Current versions of TCP rely on loss as indicators of congestion. Clearly, this is

undesirable if one wants to operate the network at low-levels of loss. On the other hand,

losses are good indicators of congestion and one needs other signals from the network to

make congestion-control decisions with very little or no loss. The schematic of a sender

receiver connection is seen in Figure 2. Explicit Congestion Notification (ECN) has been

recently proposed to provide early indication to sources about imminent congestion in

the network. ECN marking is a mechanism to provide such information about the

network to the users.

Figure 2. A schematic of a sender-receiver connection (Hollot, 2002).

Serhat Özekes

 126

To provide ECN marks, the routers need to mark packets intelligently that conveys

information about the current state of the network to the users. Algorithms which the

routers employ to convey such information are called as Active Queue Management
(AQM) schemes. There are various AQM schemes that have proposed in the literature

which are summarized in Figure 3. Here are the currently proposed AQM algorithms

(Hollot, 2002):

• Drop Tail

• RED

• BLUE

• REM

• GREEN

• PURPLE

Figure 3. The development of AQM algorithms by time (Pletka et al., 2003/a).

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 127

In general, AQM schemes control congestion by controlling flow. Congestion is

measured and a control action is taken. There are mainly two approaches for measuring

congestion: (1) queue based, and (2) flow based. In queue based AQMs congestion is

observed by queue size. The drawback of this is that a backlog of packets is inherently

necessitated by the control mechanism, as congestion is observed when the queue is

already positive. This creates unnecessary delay and jitter (delay variation). Flow based

AQMs, on the other hand, determine congestion and take action based on the packet

arrival rate. For such schemes, backlog, and all its adverse implications, is not necessary

for the control mechanism (Wydrowski and Zukerman, 2002).

Goals of an active queue management mechanism can be summarized as follows

(Braden et al., 1998):

1. Reducing number of packets dropped in routers: Keep average queue size small,

hence leaving enough space for bursts.

2. Providing lower-delay interactive service: By keeping average queue size small,

end-to-end delays will be shorter.

3. Avoiding lock-out behavior: Avoid bias against low bandwidth and bursty flows.

Guarantee that a newly arriving packet ‘almost always’ finds a place in the buffer.

This paper will discuss the above proposed AQM algorithms. There will be comparisons

among these algorithms. In section 2 Drop Tail, in section 3 RED, in section 4 BLUE, in

section 5 REM, in section 6 GREEN, in section 7 PURPLE will be discussed and section

8 will conclude the paper.

2. DROP TAIL

The traditional technique for managing router queue lengths is to set a maximum length

(in terms of packets) for each queue, accept packets for the queue until the maximum

length is reached, then reject (drop) subsequent incoming packets until the queue

decreases because a packet from the queue has been transmitted. This technique is

known as ‘drop tail’, since the packet that arrived most recently (i.e., the one on the tail

Serhat Özekes

 128

of the queue) is dropped when the queue is full. This method has served the Internet well

for years, but it has two important drawbacks (Braden et al., 1998):

1. Lock-Out: In some situations drop tail allows a single connection or a few flows to

monopolize queue space, preventing other connections from getting room in the

queue. This "lock-out" phenomenon is often the result of synchronization or other

timing effects.

2. Full Queues: The drop tail discipline allows queues to maintain a full (or, almost

full) status for long periods of time, since tail drop signals congestion (via a packet

drop) only when the queue has become full. It is important to reduce the steady-

state queue size, and this is perhaps queue management's most important goal.

In short, drop tail is effectively ‘no management’. As the demand on networks increased,

the amount of data being passed through links and hubs could no longer be unmanaged.

A new algorithm was developed called Random Early Detection, the first real AQM

algorithm to manage data congestion (Wydrowski and Zukerman, 2002).

3. THE RED (RANDOM EARLY DETECTION) ALGORITHM

One of the biggest problems with TCP’s congestion control algorithm over drop tail

queues is that sources reduce their transmission rates only after detecting packet loss due

to queue overflow. Since a considerable amount of time may elapse between the packet

drop at the router and its detection at the source, a large number of packets may be

dropped as the senders continue transmission at a rate that the network cannot support.

RED alleviates this problem by detecting incipient congestion early and delivering

congestion notification to the end-hosts, allowing them to reduce their transmission rates

before queue over- flow occurs.

Van Jacobson and Sally Floyed first introduced the RED algorithm in August of 1993

(Floyd and Jacobson, 1993; Feng et al., 1999/a). RED has been designed with the

objective to minimize packet loss and queuing delay, avoid global synchronization of

sources, maintain high link utilization and remove biases against bursty sources.

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 129

The congestion scenario presented in Figure 4 occurs when a large number of TCP

sources are active and when a small amount of buffer space is used at the bottleneck

link. As the Figure shows, at t = 1, a sufficient change in aggregate TCP load (due to

TCP opening its congestion window) causes the transmission rates of the TCP sources to

exceed the capacity of the bottleneck link. At t = 2, the mismatch between load and

capacity causes a queue to build up at the bottleneck. At t = 3, the average queue length

exceeds minth and the congestion-control mechanisms are triggered. At this point,

congestion notification is sent back to the end hosts at a rate dependent on the queue

length and marking probability maxp. At t = 4, the TCP receivers either detect packet

loss or observe packets with their ECN bits set. In response, duplicate

acknowlegdements and/or TCP-based ECN signals are sent back to the sources. At t = 5,

the duplicate acknowlegements and/or ECN signals make their way back to the sources

to signal congestion. At t = 6, the sources finally detect congestion and adjust their

transmission rates. Finally, at t = 7, a decrease in offered load at the bottleneck link is

observed. Note that it has taken from t = 1 until t = 7 before the offered load becomes

less than the link’s capacity. Depending upon the aggressiveness of the aggregate TCP

sources and the amount of buffer space available in the bottleneck link, a large amount

of packet loss and/or deterministic ECN marking may occur. Such behavior leads to

eventual underutilization of the bottleneck link (Feng, 2002/b).

One way to solve this problem is to use a large amount of buffer space at the RED

gateways. For example, it has been suggested that in order for RED to work well, an

intermediate router requires buffer space that amounts to twice the bandwidth-delay

product. This approach, in fact, has been taken by an increasingly large number of router

vendors. Unfortunately, in networks with large bandwidth-delay products, the use of

large amounts of buffer adds considerable end-to-end delay and delay jitter. This

severely impairs the ability to run interactive applications. In addition, the abundance of

deployed routers which have limited memory resources makes this solution undesirable

(Feng, 2002/b; Lin and Morris, 1997).

Figure 5 shows how an ideal queue management algorithm works. In this Figure, the

congested gateway delivers congestion notification at a rate which keeps the aggregate

transmission rates of the TCP sources at or just below the clearing rate. While RED can

achieve this ideal operating point, it can do so only when it has a sufficiently large

amount of buffer space and is correctly parameterized (Feng, 2002/b).

Serhat Özekes

 130

Figure 4. RED example (Feng, 2002/b)

Figure 5. Ideal scenario (Feng, 2002/b)

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 131

RED gateway calculates the average queue size, using a low-pass filter with an

exponential weighted moving average. The average queue size is compared to two

thresholds, a minimum threshold and a maximum threshold (Floyd and Jacobson, 1993).

When the average queue size is less than the minimum threshold, no packets are marked.

When the average queue size is greater than the maximum threshold, every arriving

packet is marked. If marked packets are in fact dropped, or if all source nodes are

cooperative, this ensures that the average queue size does not significantly exceed the

maximum threshold (Floyd and Jacobson, 1993; Lin and Morris, 1997).

When the average queue size is between the minimum and the maximum threshold, each

arriving packet is marked with probability pa, where pa is a function of the average

queue size avg. Each time that a packet is marked, the probability that a packet is

marked from a particular connection is roughly proportional to that connection’s share of

the bandwidth at the gateway. The general RED gateway algorithm is given in Figure 6

(Floyd and Jacobson, 1993).

Figure 6. General algorithm for RED gateways (Floyd and Jacobson, 1993).

RED interacts with TCP: as source rates increase, queue length grows, more packets are

marked, prompting the sources to reduce their rates, and the cycle repeats. TCP defines

precisely how the source rates are adjusted while active queue management defines how

for each packet arrival

 calculate the average queue size avg

 if minth avg < maxth

 calculate probability pa

 with probability pa:

 mark the arriving packet

 else if maxth avg

 mark the arriving packet

Serhat Özekes

 132

the congestion measure is updated. For RED, the congestion measure is queue length

and it is automatically updated by the buffer process. The queue length in the next

period equals the current queue length plus aggregate input minus output (Athuraliya et

al., 2001)

[]+
−+=+)()()()1(tctxtbtb llll

 (1)

where [z]
+

= max{z,0}. Here b1(t) is the aggregate queue length at queue l in period t,
xl(t) is the aggregate input rate to queue l in period t, and cl(t) is the output rate in period

t (Athuraliya et al., 2001).

4. THE BLUE ALGORITHM

The BLUE algorithm resolves some of the problems of RED by employing the use of a

hybrid flow control scheme along with a queue size congestion measuring scheme. It

uses flow and queue events to modify the congestion notification rate. This rate is

adjusted by two factors: packet loss from queue congestion and link utilization or

underutilization. A key difference the BLUE algorithm has from RED, is that uses

packet loss rather than the average queue length (Feng, 1999/b).

BLUE maintains a single probability, Pm, to mark (or drop) packets. If the queue is

continually dropping packets due to buffer overflow, BLUE increases Pm, thus

increasing the rate at which it sends back congestion notification or dropping packets.

Conversely, if the queue becomes empty or if the link is idle, BLUE decreases its

marking probability. This effectively allows BLUE to “learn” the correct rate it needs to

send back congestion notification or dropping packets (Feng, 2002/b).

The typical parameters of BLUE are d1, d2, and freeze time. d1 determines the amount

by which Pm is increased when the queue overflows, while d2 determines the amount by

which Pm is decreased when the link is idle. freeze time is an important parameter that

determines the minimum time interval between two successive updates of Pm. This

allows the changes in the marking probability to take effect before the value is updated

again. Based on those parameters the basic blue algorithms can be summarized as Figure

7 (Feng, 2002/b):

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 133

Upon link idle event:
if ((now-last update)>freeze time)

Pm = Pm-d2;

Last update = now;

Upon packet loss event:
if ((now–last update)>freeze time)

Pm = Pm+d1;

Last update = now;

Figure 7. The BLUE algorithm (Feng, 2002/b).

Here are some problems with BLUE (Feng, 1999/b):

• BLUE uses a hashing function to discover the non-responsive flows. This depends

on the assumption that non-responsive flows would not be very large in number.

We know that this is true but there could be cases when this assumption does not

hold true.

• When we have large number of non-responsive flows, they could pollute the bins

and TCP flows could be mistaken to be non-responsive, resulting in needlessly

penalizing them.

• One solution to this could be that we change the hash functions during regular

intervals of time. This would map some responsive flows to unpolluted bins.

• Another problem is that once a flow is marked, it is tainted for ever. If later the flow

restrains itself, BLUE still tries to reduce its sending rate through packet drops.

5. THE REM (RANDOM EXPONENTIAL MARKING) ALGORITHM

REM aims to achieve both high utilization and negligible loss and delay in a simple and

scalable manner. The key idea in achieving this is to decouple congestion measure from

performance measure such as loss, queue length or delay. While congestion measure

indicates excess demand for bandwidth and must track the number of users, performance

measure should be stabilized around their targets independently of the number of users.

Serhat Özekes

 134

REM that has the following key features (Athuraliya et al., 2001):

1. match rate clear buffer:
It attempts to match user rates to network capacity while clearing buffers (or stabilize

queues around a small target), regardless of the number of users.

2. sum prices:
The end-to-end marking (or dropping) probability observed by a user depends in a

simple and precise manner on the sum of link prices (congestion measures), summed

over all the routers in the path of the user.

The ‘match rate clear buffer’ feature implies that, contrary to the conventional wisdom,

high utilization is not achieved by keeping large backlogs in the network, but by feeding

back the right information for users to set their rates. The first idea of REM is to both

stabilize the input rate around link capacity and the queue around a small target,

regardless of the number of sources sharing the link. Each output queue that implements

REM maintains a variable called ‘price’ as a congestion measure. This variable is used

to determine the marking probability, as explained in the next subsection. Price is

updated, periodically or asynchronously, based on rate mismatch (i.e., difference

between input rate and link capacity) and queue mismatch (i.e., difference between

queue length and target). The price is incremented if the weighted sum of these

mismatches is positive, and decremented otherwise. The weighted sum is positive when

either the input rate exceeds the link capacity or there is excess backlog to be cleared,

and negative otherwise. When the number of sources increases, the mismatches in rate

and in queue grow, pushing up price and hence marking probability. This sends a

stronger congestion signal to the sources which then reduce their rates. When the source

rates are too small, the mismatches will be negative, pushing down price and marking

probability and raising source rates, until eventually, the mismatches are driven to zero,

yielding high utilization and negligible loss and delay in equilibrium. The buffer will be

cleared in equilibrium if the target queue is set to zero (Athuraliya et al., 2001).

Whereas the congestion measure (queue length) in RED is automatically updated by the

buffer process according to (1), REM explicitly controls the update of its price to bring

about its first property. Precisely, for queue l, the price pl(t) in period t is updated

according to (Athuraliya et al., 2001):

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 135

[]+−+−+=+))()())((()()1(
*

tctxbtbtptp lllllll αγ (2)

where γ>0 and αl>0 are small constants and [z]
+

= max{z,0} . Here, bl(t) is the aggregate

buffer occupancy at queue l in period t and bl
*≥0 is target queue length, xl(t) is the

aggregate input rate to queue l in period t , and cl(t) is the available bandwidth to queue l
in period t . The difference xl(t)-cl(t) measures rate mismatch and the difference bl(t)-bl

*

measures queue mismatch. The constant αl can be set by each queue individually and

trades off utilization and queueing delay during transient. The constant γ controls the

responsiveness of REM to changes in network conditions. Hence, from (2), the price is

increased if the weighted sum of rate and queue mismatches, weighted by αl , is positive,

and decreased otherwise. In equilibrium, the price stabilizes and this weighted sum must

be zero. i.e., αl(bl-bl
*
)+xl-cl=0. This can hold only if the input rate equals capacity (xl=cl)

and the backlog equals its target (bl=bl
*
), leading to the first feature mentioned at the

beginning (Athuraliya et al., 2001).

The ‘sum prices’ feature is essential in a network where users typically go through

multiple congested links. It clarifies the meaning of the congestion information

embedded in the end-to-end marking (or dropping) probability observed by a user, and

thus can be used to design its rate adaptation (Athuraliya et al., 2001).

The output queue marks each arrival packet that is not already marked at an upstream

queue, with a probability that is exponentially increasing in the current price. The

exponential form of the marking probability is critical in a large network where the end-

to-end marking probability for a packet that traverses multiple congested links from

source to destination depends on the link marking probability at every link in the path.

When, and only when, individual link marking probability is exponential in its link

price, this end-to-end marking probability will be exponentially increasing in the sum of

the link prices at all the congested links in its path. This sum is a precise measure of

congestion in the path. Since it is embedded in the end-to-end marking probability, at

every link in the path. When, and only when, individual link marking probability is

exponential in its link price, this end-to-end marking probability will be exponentially

increasing in the sum of the link prices at all the congested links in its path. This sum is a

precise measure of congestion in the path. Since it is embedded in the end-to-end

marking probability, it can be easily estimated by sources from the fraction of their own

Serhat Özekes

 136

packets that are marked, and used to design their rate adaptation (Athuraliya et al.,

2001).

Precisely, suppose a packet traverses links l=1,2,...,L that have prices pl(t) in period t.
Then the marking probability ml(t) at queue l in period t is (Athuraliya et al., 2001):

)(

1)(
tp

l
ltm −−= φ (3)

where 1>φ is a constant. The end-to-end marking probability for the packet is then:

)(

1

1))(1(1
tp

l

L

l

lltm Σ−

=

−=−−∏ φ (4)

i.e., the end–to–end marking probability is high when the congestion measure of its path,

-Σlpl(t), is large.

When the link marking probabilities ml(t) are small, and hence the link prices pl(t) are

small, the end-to-end marking probability given by (5) is approximately proportional to
the sum of the link prices in the path (Athuraliya et al., 2001):

end-to-end marking probability

6. THE GREEN (GENERALIZED RANDOM EARLY EVASION NETWORK)
ALGORITHM

The GREEN Algorithm is a feedback control function which adjusts the rate of

congestion notification in response to the flow based congestion measure, xest, the

estimated data arrival rate. GREEN is based on a threshold function. If the link’s

estimated data arrival rate xest is above the target link capacity c1, the rate of congestion

notification, P, is incremented by ∆P at a rate of 1/∆T. Conversely, if xest is below cl, P is

decremented by ∆P at a rate of 1/∆T. The algorithm applies probabilistic marking of

incoming packets at the rate P, either by dropping packets or setting the ECN. Let the

step function U(x) be defined by (Wydrowski and Zukerman, 2002; Feng et al., 2002/a):

)()(log tpl
l

e Σ≅ φ

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 137





<−

≥+
=

.01

01
)(

x

x
xU (5)

Therefore,

)(. test cxUPPP −∆+= (6)

The target link capacity ct is assigned a value just below the actual capacity c, typically

97.0 c, so that the queue size converges to 0. Incoming data rate estimation is performed

using exponential averaging:

estest xKDelDelBKDelx *)/exp()/(*))/exp(1(−+−−= (7)

where Del is the inter-packet delay, B the packet size and K the time constant. Other

arrival rate estimation techniques could also be used successfully.

There is a relationship between REM and GREEN. If Eq (3) is linearised, m = P, the

exponential term is eliminated. Furthermore if the buffer term α = 0, and the linear

constant γ is replaced with the step function (5), GREEN’s congestion notification rate P

becomes equivalent to REM’s price P1 (Wydrowski and Zukerman, 2002).

7. THE PURPLE ALGORITHM

The PURPLE approach, in contrast to others, predicts the impact of its own actions on

the behavior of reactive protocols and thus the short-term future traffic (Pletka et al.,

2003/b). PURPLE achieves this by analyzing end-to-end information about the

congestion state in the network. PURPLE allows much faster convergence of the main

AQM parameters, at least towards a local optimum, thereby smoothing and minimizing

both congestion feedback and queue occupancy. To improve the prediction, in (Pletka et

al., 2003/b) it is also passively monitored (using lightweight operations) information

pertaining to the amount of congestion elsewhere in the network as seen by flows

traversing this router.

Serhat Özekes

 138

PURPLE provides smooth packet marking rates and queuing delay without any tuning of

parameters because of its online optimized, autonomous behavior that relies on online

model-based predictions. It is also able to avoid taildrop losses almost completely while

providing an excellent balance between goodput, throughput, and average delay. This is

achieved using minimal effort and state information thanks to the introduction of three

new mechanisms, namely end-to-end congestion analysis, monitoring of ECN

information, and use of the TCP model equation. Using simulations, in (Pletka et al.,

2003/b) it has been shown that PURPLE behaves very well in a variety of

circumstances.

8. CONCLUSION

In this paper, we have mentioned the terms AQM (Active Queue Management), QoS

(Quality of Service) and ECN (Explicit Congestion Notification). We have explained the

main goals of AQM. In this work, the performance of six AQM schemes, selected from

amongst the many published over the past ten years, has been evaluated. We have

compared Droptail, RED, BLUE, REM, GREEN and PURPLE algorithms. It has been

demonstrated strengthness and weakness of these algorithms.

AQM algorithms are absolutely useful because the management of packets to avoid

congestion occasionally requires exceeding hardware capabilities. As long as this

demand exceeding of hardware capabilities continue AQM algorithms will be popular

and studies on networking flows area will go on.

REFERENCES

Athuraliya S., Lapsley D. E., Low S. H., (2001), “Random early marking for Internet

congestion control”, IEEE/ACM Transactions on Networking, Vol. 15, No:3, 48-53

Braden B., Clark D., Crowcroft J., Davie B., Deering S., Estrin D., Floyd S., Jacobson

V., Minshall G., Partridge C., Peterson L., Ramakrishnan K. K., Shenker S., and

Wroclawski J., (1998), “Recommendations on queue management and congestion

avoidance in the internet”, Internet Draft

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2005/1

 139

Feng W., Kandlur D., Saha D., Shin K. , (1999/a), “A Self-Configuring RED Gateway”,

In Proc. IEEE INFOCOM, 1320–1328

Feng W., Kandlur D., Saha D., Shin K., (1999/b), “Blue: A new class of active queue

management schemes,” Technical Report, CSE-TR-387-99, U. Michigan 286-299

Feng W., Kapadia A., Thulasidasan S., (2002/a), “GREEN: Proactive Queue

Management over a Best-Effort Network”, In Proceedings of IEEE Global

Telecommunications Conference (GLOBECOM 2002), Taipei, Taiwan, Vol.21, No:1,

1784-1788

Feng W., Shin K. G., Kandlur D. D., Saha D., (2002/b), "The BLUE active queue

management algorithms", IEEE/ACM Transactions on Networking, Vol.10, No:4, 513-

528

Floyd S., Jacobson V., (1993), “Random early detection gateways for congestion

avoidance”, IEEE/ACM Trans. On Networking, Vol.1, No:4, 397–413

Hollot C. V., Misra V., Towsley D., Gong W., (2002), “Analysis and Design of

Controllers for AQM Routers Supporting TCP Flows”, IEEE Transactions on Automatic

Control, Vol. 47, No: 6, 945-959

Lin D., Morris R., (1997), “Dynamics of Random Early Detection”, In Proc. of ACM

SIGCOMM, 127-137

Manley R., (2003), “Reducing Packet Loss and Latency by Active Queue Management

Algorithms”, CSci 3902 - Seminar I, UMM CSci Twiki

Neame T., (2003), “Characterisation and Modelling of Internet Traffic Streams”, Ph. D.

Thesis, Department of Electrical And Electronic Engineering, The University Of

Melbourne, 1-3

Pletka R., Waldvogel M., Mannal S., (2003/a), “PURPLE: Predictive Active Queue

Management Utilizing Congestion Information”, Proceedings of the 28th Annual IEEE

Conference on Local Computer Networks LCN 2003, 21-30

Serhat Özekes

 140

Pletka R., Waldvogel M., Mannal S., (2003/b), “PURPLE: Predictive Active Queue

Management Utilizing Congestion Information”, Presentation Slide, LCN ’03, Bonn /

Königswinter

Wydrowski B., Zukerman M., (2002), "GREEN: An Active Queue Management

Algorithm for a Self Managed Internet", Proceedings of ICC 2002, New York, Vol. 4,

2368-2372

