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Abstract- In this paper, global chaos synchronization problem 

is investigated for WINDMI (J.C. Sportt, 2003) and Coullet (P. 

Coullet, et al., 1979) chaotic systems using active feedback 

control. Our theorems on synchronization for WINDMI and 

Coullet chaotic systems are established using Lyapunov 

stability theory. The controller design can be divided into two 

steps: the first one needs the derivation of control Lyapunov 

function and the second step involves using existing control 

Lyapunov function to synchronize the chaotic system. The 

active control method is effective and convenient to 

synchronize the chaotic systems. Mainly this technique gives 

the flexibility to construct a control law. Numerical simulations 

are also given to illustrate and validate the synchronization 

results derived in this paper. 

Keywords- Chaos; Synchronization; Active Control; 

WINDMi system; Coullet System 

I. INTRODUCTION 

Dynamics systems described by nonlinear differential 

equations can be strongly sensitive to initial conditions. This 

phenomenon is known as deterministic chaos, which means 

that the mathematical description of the system is 

deterministic but behaviour of the system is unpredictable. 

The synchronization of chaotic system was first researched 

by Yamada and Fujisaka 
[1]

 with subsequent work by Pecora 

and Carroll 
[2], [3]

. The synchronization of chaos is one way 

of explaining sensitive dependence on initial conditions
 [4], [5]

. 

The problem of chaos synchronization is to design a 

coupling between the two systems such that the chaotic time 

evaluation becomes ideal. The output of the response system 

asymptotically follows the output of the drive system i.e. the 

output of the drive system controls the response system. 

The synchronization for chaotic systems has been 

widespread to the scope, such as generalized 

synchronization 
[6]

, phase synchronization 
[7]

, lag 

synchronization, projective synchronization 
[8]

, generalized 

projective synchronization
 [9, 10, 11, 12]

 and even anti-

synchronization. The property of anti-synchronization 

establishes a predominating phenomenon in symmetrical 

oscillators, in which the state vectors have the same absolute 

values but opposite signs
 [13, 14, 15]

. A variety of schemes for 

ensuring the control and synchronization of such systems 

have been demonstrated based on their potential 

applications in various fields including chaos generator 

design, secure communication 
[16, 17]

, physical systems 
[18]

, 

chemical reaction
 [19]

, ecological systems 
[20]

, information 

science 
[21]

, energy resource systems 
[22]

, ghostburster 

neurons 
[23]

, bi-axial magnet models 
[24]

, neuronal models 
[25, 

26]
, IR epidemic models with impulsive vaccination 

[27]
 and 

predicting the  influence of solar wind to celestial bodies 
[28]

, 

etc. So far a variety of impressive approaches have been 

proposed for the synchronization of the chaotic systems 

such as the OGY method 
[29]

, sampled feedback 

synchronization method 
[30]

, time delay feedback method 
[31]

, 

adaptive design method
 [32, 33, 34]

, sliding mode control 

method 
[35, 36, 37]

, active control method 
[38, 39] 

and 

backstepping control design 
[40, 41]

 etc. 

 In this paper, active control design approach is proposed. 

The controller design can be divided into two steps. The 

first one needs the derivation of control Lyapunov function 

and the second step involves using an existing control 

Lyapunov function to synchronize the chaotic systems. This 

approach is systematic and guarantees the global 

synchronization of the WINDMI (J. C. Sportt, 
[42]

) and 

Coullet (P. Coullet et. al.,
 [43]

) chaotic systems. This paper is 

organized as follows. In Section II, the methodology of 

chaotic synchronization by active control method is given. 

In Section IV, the chaos synchronization of two identical 

WINDMI chaotic systems is discussed. In Section V, the 

chaos synchronization of two identical Coullet chaotic 

systems is discussed. In Section VI, the chaos 

synchronization of WINDMI and Coullet chaotic systems is 

discussed. Section VII gives the conclusions of this paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY 

In general, the two dynamic systems in synchronization 

are called the master and slave system respectively. A well 

designed controller will make the trajectory of slave system 

track the trajectory of the master system.   

Consider the master system described by the dynamics 

  ( )x Ax f x     (1) 

where 
nx R is the state of the system, A is the n n  

matrix of the system parameters and : n nf R R  is the 

nonlinear part of the system. The system (1) is considered as 

the master or drive system. 

Consider the slave system with the controller 

 1 2 3, , ,...
T

nu u u u described by the dynamics 

  ( )y By g y u     (2) 

where 
ny R is the state vector of the slave system, B is 
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the n n  matrix of the system parameters, : n ng R R  

is the nonlinear part of the slave system and 
nu R is the 

active controller of the slave system. If A B and 

,f g then x and y are the states of two identical chaotic 

systems. If A B or ,f g then x and y are the states 

of two different chaotic systems. The Chaotic Systems (1) 

and (2) depend not only on state variables but also on time t 

and the parameters. 

We define the synchronization error as 

  e y x     (3) 

then the error dynamics is obtained as  

( ) ( )e By Ax g y f x u      

 (4) 
The synchronization error system controls a controlled 

chaotic system with control input  1 2 3, , ,... nu u u u . Thus 

the active feedback control so as to stabilize the Error 

Dynamics (4) for all initial conditions (0) ,ne R i.e. 

lim ( ) 0
t

e t


  for all initial conditions (0) .ne R  

Theorem: The Chaotic Systems (1) and (2) are globally 
exponentially synchronized with active 

control ),,( eyxu  , where xye   is an error and 

nn RR  is continuous vector function with yx,  

and e as its arguments.  

Proof: The active control design uses Lyapunov 
function methodology for establishing the synchronization 
of Master System (1) and Slave System (2). By the 
Lyapunov function methodology, a candidate Lyapunov 
function is taken as 

   ( ) TV e e Pe           (5) 

where P is a n n  positive definite matrix. Note that  

: n nV R R  is a positive definite function by 

construction. It is assumed that the parameters of the master 
and slave systems are known and that the states of both 
systems (1) and (2) are measurable. If a controller u  can be 

found such that 

   ( ) TV e e Qe          (6) 

where Q  is a positive definite matrix, then : n nV R R  

is a negative definite function. Hence, by Lyapunov stability 
theory 

[44]
, the Error Dynamics (4) is globally exponentially 

stable and hence the Condition (5) will be satisfied for all 

initial conditions (0) .ne R  then the states of the Master 

System (1) and the slave system (2) are globally 
exponentially synchronized.          ■ 

III. SYSTEM DESCRIPTION 

A. The WINDMI System 

The WINDMI (J.C. Sportt, 
[42]

) system is a complex 

driven-damped dynamical system. The WINDMI system 

describes as the energy flow through the solar wind 

magnetosphere- ionosphere system. The dynamics of the 

chaotic WINDMI system is described by 

 

1

1 2

2 3

3 3 2

x

x x

x x

x ax x b e





    







  (7) 

where 
1 2 3,  ,  x x x  are state variables and ,  a b are positive 

real constants. The WINDMI System (7) is chaotic when the 

parameter values 0.7a   and b = 2.5  and the chaotic 

attractor as shown in Figure 1. 

 

Fig. 1 Chaotic attractor of WINDMI system 

B. The Coullet System 

The Coullet (P. Coullet et al, 
[43]

) chaotic system, 
proposed by Coullet and Arneodo. The Coullet chaotic 
system is one of the paradigms of chaotic system and it 
includes a simple cubic part and three positive parameters. 
The dynamics of the chaotic Coullet system is described by 

1 2

2 3

3

3 1 2 3 1

x x

x x

x ax bx cx x





   







  (8) 

where 
1 2 3,  ,  x x x  are state variables and ,  ,  a b c are 

positive real constants. For the Coullet Chaotic System (8), 
the parameter values are taken as those which result in 

chaotic behaviour of the system. When 0.7,  b=3.5a   

and c=1 , the chaotic attractor as shown in Figure 2. 

 

Fig. 2 The chaotic attractor of coullet system 
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IV. SYNCHRONIZATION OF TWO IDENTICAL WINDMI SYSTEMS 

USING ACTIVE CONTROL 

In this section, the active control method is applied for 

the synchronization of two identical WINDMI (J.C. Sportt, 

2003) chaotic systems
 [42]

. The WINDMI system is taken as 

the master system, which is described by the equations  

 

1

1 2

2 3

3 3 2

x

x x

x x

x ax x b e





    







  (9) 

where 
1 2 3,  ,  x x x  are state variables and ,  a b are positive 

real constants.  

The WINDMI system (2007) is also taken as the slave 

system, which is described by the equations 

 

1

1 2 1

2 3 2

3 3 2 3

y

y y u

y y u

y ay y b e u

 

 

     







  (10) 

where  1 2 3, ,
T

u u u u is the active controller to be 

designed so as to synchronize the states of the identical 

WINDMI Systems (9) and (10). 

The synchronization error is defined by 

1 1 1 2 2 2 3 3 3,   ,   e y x e y x e y x       (11) 

The error dynamics is obtained as 

 

1 1

1 2 1

2 3 2

3 3 2 3

y x

e e u

e e u

e ae e e e u

 

 

     







  (12) 

Theorem 1. The identical WINDMI Chaotic Systems (9) 

and (10) are exponentially and globally synchronized for 

any initial conditions with the active controller u defined by  

 

1 1

1 2 1 1

2 3 2 2

3 3 2 3 3

y x

u e k e

u e k e

u ae e e e k e

  

  

    

 

Proof. We introduce the active feedback control to 

design the controller u , as long as these feedback stabilize 

System (10) converge to zero as the time t  . 

 The candidate Lyapunov function is taken as 

   2 2 2

1 2 3

1 1
( )

2 2

TV e e e e e e         (13) 

which is positive definite on 
3.R  A simple calculation gives 

1 1

1 2 1 1 2 3

2 2 3 3 2 3 3

( )

            ( )y x

V e e e e u e e

e u e ae e e e e u

  

      



      (14) 

We define 

 
1 1 1 2 2 2 3 3 3,  ,  a b a b a bu u u u u u u u u       

      (15) 

We choose 

1 1

1 2 1 1 1

2 3 2 2 2

3 3 2 3 3 3

,  

,  

,  

a b

a b

y x

a b

u e u k e

u e u k e

u ae e e e u k e

   

   

     

(16) 

Substitution of (16) into (15) yields  

 

1 1

1 2 1 1

2 3 2 2

3 3 2 3 3

y x

u e k e

u e k e

u ae e e e k e

  

  

    

  (17) 

Substitution of (17) into (14) yields  

 2 2 2

1 1 2 2 3 3( )V e k e k e k e      (18) 

which is a negative definite function on 
3R since 

1 2 3,  ,  0k k k   . 

Thus, by Lyapunov stability theory 
[44]

, then the Error 
Dynamics (12) is globally exponentially stable.         ■ 

Numerical Results 

For the numerical simulations, the fourth-order Runge-
Kutta method is used to solve the system using MATLAB. 
For the WINDMI Chaotic System (9), the parameter values 
are taken as those which result in chaotic behavior of the 
system.  

When 0.7a   and b = 2.5  and the chaotic attractor as 

shown in Figure 1. 

The initial values of the Master System (9) are taken as 

1 2(0) 0.641, (0) 0.518 x x  and 
3(0) 0.925x  , 

 while the initial values of the slave system (10) are taken as  

1 2(0) 0.125, (0) 0.834 y y  and 
3(0) 0.153y   

Figure 3 shows that the synchronization between the 
states of the Master System (9) and the Slave System (10) 
and Figure 4 shows that the synchronization error between 
the states of the Master System (9) and the Slave System 
(10). 

 

Fig. 3 Synchronization of the identical WINDMI systems 
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Fig. 4 Synchronization error of the identical WINDMI systems 

V. SYNCHRONIZATION OF TWO IDENTICAL COULLET 

SYSTEMS USING ACTIVE CONTROL 

In this section, the active control method is applied for 
the synchronization of two identical Coullet (P. Coullet et., 
al., 1979) chaotic systems 

[43]
.  

The Coullet system (2007) is taken as the master system, 
which is described by the equations  

 

1 2

2 3

3

3 1 2 3 1

x x

x x

x ax bx cx x





   







  (19) 

where
1 2 3,  ,  x x x  are state variables and ,  ,  a b c are 

positive real constants.  

The Coullet system (2007) is also taken as the slave 
system, which is described by the equations 

1 2 1

2 3 2

3

3 1 2 3 1 3

y y u

y y u

y ay by cy y u

 

 

    







  (20) 

where  1 2 3, ,
T

u u u u is the active controller to be 

designed so as to synchronize the states of the identical 
Coullet Systems (19) and (20). 

The synchronization error is defined by  

 
1 1 1 2 2 2 3 3 3,   ,   e y x e y x e y x       (21) 

The error dynamics is obtained as 

1 2 1

2 3 2

3 3

3 1 2 3 1 1 3

e e u

e e u

e ae be ce y x u

 

 

     







 (22) 

Theorem 2. The identical Coullet Chaotic Systems (19) 
and (20) are exponentially and globally synchronized for 
any initial conditions with the active controller u defined by.  

1 2 1 1

2 3 2 2

3 3

3 1 2 3 1 1 3 3

u e k e

u e k e

u ae be ce y x k e

  

  

      

 

Proof. We introduce the active feedback control to 

design the controller u , as long as these feedback stabilize 

System (22) converge to zero as the time t  . 

 The candidate Lyapunov function is taken as 

 2 2 2

1 2 3

1 1
( )

2 2

TV e e e e e e      (23) 

A simple calculation gives 

1 2 1 1 2 3

3 3

2 2 3 1 2 3 1 1 3 3

( )

            ( )

V e e e e u e e

e u e ae be ce y x e u

  

      



      (24) 

We define 

 
1 1 1 2 2 2 3 3 3,  ,  a b a b a bu u u u u u u u u     

      (25) 

We choose  

 

1 2 1 1 1

2 3 2 2 2

3 3

3 1 2 3 1 1 3 3 3

,  

,  

,  

a b

a b

a b

u e u k e

u e u k e

u ae be ce y x u k e

   

   

       

 

      (26) 

Substitution of (26) into (25) yields  

 

1 2 1 1

2 3 2 2

3 3

3 1 2 3 1 1 3 3

u e k e

u e k e

u ae be ce y x k e

  

  

      

  (27) 

Substitution of (27) into (24) yields  

 
2 2 2

1 1 2 2 3 3( )V e k e k e k e      (28) 

which is a negative definite function on 
3R since 

1 2 3,  ,  0k k k    

Thus, by Lyapunov stability theory
 [44]

, then the Error 

Dynamics (22) is globally exponentially stable.           ■ 

Numerical Results 

For the numerical simulations, the fourth-order Runge-

Kutta method is used to solve the system using MATLAB. 

For the Coullet Chaotic System (19), the parameter values 

are taken as those which result in chaotic behaviour of the 

system. When 0.7,  b=3.5a   and c=1 , the chaotic 

attractor as shown in Figure 2. 

The initial values of the master system (19) are taken as 

1 2(0) 0.125, (0) 0.625 x x  and
3(0) 0.925x  , 

 while the initial values of the slave system (20) are taken as  

1 2(0) 0.945, (0)  0.032y y  and 
3(0) 0.112y   

Figure 5 shows that the synchronization between the 

states of the Master System (19) and the Slave System (20) 

and Figure 6 shows that the synchronization error between 
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the states of the Master System (19) and the Slave System 

(20). 

 

Fig. 5 Synchronization of the identical coullet systems 

 

Fig. 6 Synchronization error of the identical coullet systems 

VI. SYNCHRONIZATION OF WINDMI AND COULLET CHAOTIC 

SYSTEMS 

In this section, the active control method is applied for 

the synchronization of two different chaotic systems 

described by WINDMI system 
[42] 

as the master or drive 

system and the Coullet system
 [43] 

as the slave or response 

system.  

The dynamics of the WINDMI system, taken as the 

master system, is described by 

  

1

1 2

2 3

3 3 2

x

x x

x x

x ax x b e





    







    (29) 

where a  and b are positive real constants.  

The dynamics of the Coullet system, taken as the slave 

system, is described by 

  

 

1 2 1

2 3 2

3

3 1 2 3 1 3

y y u

y y u

y y y y y u  

 

 

    







 (30) 

wher ,  ,      are positive constants and  1 2 3, ,
T

u u u u  

is the active controller to be designed so as to synchronize 

the states of the different Chaotic Systems (29) and  (30).  

The synchronization error is defined by  

 
1 1 1 2 2 2 3 3 3,   ,   e y x e y x e y x       

 The error dynamics is obtained as 

 

1

1 2 1

2 3 2

3

3 1 2 3 1 3 2 3

x

e e u

e e u

e y y y y ax x b e u  

 

 

        







 

      (31) 

Theorem 3. The WINDMI Chaotic System (27) and the 

Coullet Chaotic System (28) are exponentially and globally 

synchronized for any initial conditions with the active 

controller u defined by  

1

1 2 1 1

2 3 2 2

3

3 1 2 3 1 3 2 3 3

x

u e k e

u e k e

u y y y y ax x b e k e  

  

  

         

Proof. We introduce the active feedback control to design 

the controller u , as long as these feedback stabilize system 

(29) converge to zero as the time t  . 

 The candidate Lyapunov function is taken as 

  

  2 2 2

1 2 3

1 1
( )

2 2

TV e e e e e e      (32) 

A simple calculation gives 

1

1 2 1 1 2 3 2 2

3

3 1 2 3 1 3

2 3

( )

             (

                                  )
x

V e e e e u e e e u

e y y y y ax

x b e u

  

   

    

   



   (33) 

We define 

1 1 1 2 2 2 3 3 3,  ,  a b a b a bu u u u u u u u u        (34) 

We choose 

1

1 2 1 1 1

2 3 2 2 2

3

3 1 2 3 1 3 2

3 3 3

,  

,  

,

a b

a b

x

a

b

u e u k e

u e u k e

u y y y y ax x b e

u k e

  

   

   

        

 

 

(35) 

Substitution of (35) into (34) yields  

 

1

1 2 1 1

2 3 2 2

3

3 1 2 3 1 3 2 3 3

x

u e k e

u e k e

u y y y y ax x b e k e  

  

  

         

      (36) 
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Substitution of (36) into (33) yields  

 
2 2 2

1 1 2 2 3 3( )V e k e k e k e      (37) 

which is a negative definite function on 
3R since 

1 2 3,  ,  0k k k    

Thus, by Lyapunov stability theory
 [44]

, then the Error 
Dynamics (31) is globally exponentially stable.         ■ 

Numerical Simulation: 

For the numerical simulations, the fourth-order Runge-
Kutta method is used to solve the system using MATLAB.  

For the WINDMI Chaotic System (29), the parameter 
values are taken as those which result in chaotic behavior of 

the system. When 0.7a   and b = 2.5  and the chaotic 

attractor as shown in Figure 1 and the Coullet Chaotic 
System (30), the parameter values are taken as those which 
result in chaotic behavior of the system. When 

0.7,  =3.5   and =1 , the chaotic attractor as shown 

in Figure 2. 

The initial values of the Master System (29) are taken as 

1 2(0) 0.567, (0)  0.876x x  and
3(0) 0.234x  , 

 while the initial values of the slave system (28) are taken as  

1 2(0) 0.984, (0)  0.327y y  and
3(0) 0.790y  . 

Figure 7 shows that the synchronization between the 
states of the Master System (29) and the Slave System (30) 
and Figure 8 shows that the synchronization error between 
the states of the Master System (29) and the Slave System 
(30). 

 
Fig. 7 Synchronization of the WINDMI and Coullet systems 

 

Fig. 8 Synchronization error of the WINDMI and Coullet systems 

VII. CONCLUSIONS 

In this paper, active control method has been applied to 

achieve global chaos synchronization for WINDMI and 

Coullet chaotic systems. Since the Lyapunov exponents are 

not required for these calculations, the active control design 

is very effective and convenient to achieve global chaos 

synchronization. Numerical simulations have been given to 

illustrate and validate the effectiveness of the active control 

based synchronization schemes of the WINDMI and Coullet 

chaotic systems. 
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