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Abstract- The paper presents an analysis of the damping of 

laminated materials with four different stacking sequences. 

The impulse technique was chosen to perform modal analysis 

of the ease of implementation and quickness of the test. The 

numerical analysis is performed by the finite element method 

using beam element. The results obtained are compared with 

the experimental responses in frequency of the structure. The 

decrease in frequency for different rates of loading shows the 

loss of stiffness for all studied materials. The structural 

damping of the different beams is extracted from a finite 

element modelling and evaluated from a handling of damaged 

and undamaged modal energies. 
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I. INTRODUCTION 

Damping is an important parameter for vibration control, 

fatigue endurance, impact resistance, etc. although the 

damping of composite materials is not very high; it is 

significantly higher than that measured for most usual 

metallic materials. At the constituent level, the energy 

dissipation in fibre reinforced composites is induced by 

different mechanisms such as the fibre- matrix interface, the 

damping due to defects or damage, etc. At the laminate level, 

damping is strongly depending on the layer constituent 

properties as well as layers orientations, interlaminar effects 

and stacking sequence. Viscoelastic materials combine the 

capacity of an elastic type material to store energy with the 

capacity to dissipate energy. So, the use of an energy 

approach for evaluating the material or structure damping is 

widely considered. In this energy approach, the dissipated 

energy is related to the strain energy stored by introducing a 

damping parameter 
[1]

. 

The initial works on the damping analysis of fibre 

composite materials were reviewed extensively in review 

paper by Gibson and Plunkett 
[2]

 and Gibson and Wilson 
[3]

. 

A damping process has been developed initially by Adams 

and Bacon
 [4]

 in which the energy dissipation can be 

described as separable energy dissipations associated to the 

individual stress components. This analysis was refined in 

later paper of Ni and Adams
 [5]

. The damping of orthotropic 

beams is considered as function of material orientation and 

the papers also consider cross-ply laminates and angle-ply 

laminates, as well as more general types of symmetric 

laminates.  

The damping concept of Adams and Bacon was also 

applied by Adams and Maheri 
[6]

 to the investigation of 

angle-ply laminates made of unidirectional glass fibre or 

carbon layers. The finite element analysis has been used by 

Lin et al. 
[7]

 and Maheri and Adams 
[8] 

to evaluate the 

damping properties of free-free fibre reinforced plates. 

These analyses were extended to a total of five damping 

parameters, including the two transverse shear damping 

parameters. More recently the analysis of Adams and Bacon 

was applied by Yim
 [9]

 and Jang
 [10]

 to different types of 

laminates, then extended by Yim and Gillespie 
[11]

 including 

the transverse shear effect in the case of 0° and 90° 

unidirectional laminates. For thin laminate structures the 

transverse shear effects can be neglected and the structure 

behaviour can be analysed using the classical laminate 

theory. 

The natural frequencies and mode shapes of rectangular 

plates are well described using the Ritz method introduced 

by Young 
[12]

 in the case of homogeneous plates. The Ritz 

method was applied by Berthelot and Safrani 
[13]

 to describe 

the damping properties of unidirectional plates. The analysis 

was extended to the damping analysis of laminates 
[14]

. The 

objective of this work is to study different stacking 

sequences effect on damping by using a finite element 

analysis to evaluate the damping and the natural frequencies 

of the structure.  

II. EXPERIMENTAL TESTS  

A. Tested Materials 

The experimental study was achieved in the case of glass 

fibre composites. The laminates were prepared by hand lay-

up process from SR1500 epoxy resin with SD2505 hardener 

and unidirectional E-glass fibre fabrics of weight 300gm-2. 

Beams of 200 mm length and 20 mm width were cured at 

room temperature with a pressure of 30 kPa using vacuum 

moulding process, and then post-cured for 8h at 80°C in an 

oven. Beams had a nominal thickness of 2 mm with a 

volume fraction of fibres equal to 0.40. The laminated 

beams with four different stacking sequences were analysed 

(Table 1): 
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TABLE I STACKING SEQUENCES OF COMPOSITE MATERIALS  

Designation  Stacking sequences 

U [(0)]8 

C1 [(0/90)s]2 

C2 [(0/90)2]s 

C3 [(02/902)]s 

The mechanical modulus of elasticity of the 

unidirectional materials referred to the fibre direction was 

measured in static tensile (Table 2): 

TABLE IIIII MECHANICAL CHARACTERISTICS OF COMPOSITE MATERIALS   

Materials 
Young’s 

modulus GPa) 
Max load at 

fracture  (KN) 

U 21.08 35.165 

C1 14.51 20.020 

C2 15.04 20.915 

C3 15.06 18.428 

The experimental investigation was conducted using 

tensile cyclic tests for different laminates studied. The 

applied load ratio increases with 10 % of maximum load 

failure for each cycle. Fig. 1 shows the results obtained for 

the Young’s modulus reduction as a function of cycle 

number.  

 
Fig. 1 Stiffness reduction of U, C1, C2 and C3 laminates as a function of 

cycle number  

B. Experimental Equipment 

 
Fig. 2 Experimental equipment  

 The damping characteristics of the materials were 

obtained by subjecting beams to flexural vibrations. The 

equipment used is shown in Fig. 2. The test specimen is 

supported horizontally as a cantilever beam in a clamping 

block. An impulse hammer is used to induce the excitation 

of the flexural vibrations of the beam and the beam response 

is detected using a laser vibrometer. Next, the excitation and 

the response signals are digitalized and processed by a 

dynamic analyzer of signals. 

 This analyzer associated with a PC computer performs 

the acquisition of signals, controls the acquisition conditions 

and next performs the analysis of the signals acquired 

(Fourier transform, frequency response, mode shapes, etc.). 

In the case of laminate materials, the damping 

characteristics of the beams are deduced from the Fourier 

transform of the beam response to an impulse input by 

fitting this experimental response with the analytical 

response of the beam which was derived in [13] using the 

Ritz method.  

C. Analysis of the Experimental Results 

Figs. 3-6 report the frequency response of specimen 

beams obtained for three different loading rates (0 %, 50 % 

and 90 %). These responses show peaks, which correspond 

to the natural frequencies of the flexural vibrations of the 

beams. 

 
Fig. 3 Loading rates influence on the frequency responses of structure 

constituted of U material   

 
Fig. 4 Loading rates influence on the frequency responses of structure 

constituted of C1 material   

 
Fig. 5 Loading rates influence on the frequency responses of structure 

constituted of C2 material   
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Fig. 6 Loading rates influence on the frequency responses of structure 

constituted of C3 material  

III. FINITE ELEMENT ANALYSIS 

The flexural vibrations of beams are analysed by the 

finite element method, using the stiffness matrix and mass 

matrix of beam element with two degrees of freedom per 

node (Fig. 7) and the number of elements using in this study 

is 40 elements: 

 

Fig. 7 Beam element with four degrees of freedom 

Where:     

E: the Young modulus. 

I: the moment of inertia of the beam. 

L: the length of the beam. 

S: the section of the beam. 

ρ: the density. 
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The global matrix of mass and stiffness are obtained by 

using assembly method: 

BMBM

BKBK

des
T

G

des
T

G



                               (2)  

Where:  

 B is the Boolean matrix; 

 Kdes and Mdes are unassembled matrix, they 

contain only elementary matrix of mass and stiffness.  
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IV. RESOLUTION OF THE EIGENVALUE PROBLEM 

We have two cases where the structure is: 

 undamaged; 

 damaged. 

The equation of motion (undamped and free vibration): 

    0tqktqm 


                           (4) 

The equation (4) can be written in matrix form: 

      0qKqM 






 

                         (5)  

With: 

 q: the vector of degrees of freedom; 

 for the first case [K] = [KD]; 

 for the second case [K] = [KGD]. 

Where [KGD] is the global stiffness matrix with damage, 

that takes into account the decrease in the rigidity of the 

structure when the loading rates change 
[8]

. 

The general solution of Equation (5) is: 

    ti
0 eqq                                       (6) 

By substituting the Equation (6) in Equation (5), we 

have: 

     0
2

0 qMqK                                (7) 

Then, the determinant must be zero: 

    0)MKdet( 2                             (8) 

There are many methods to calculate the eigenvalues; 

the most of these methods are to write the Equation (7) as 

follows: 

    XXH                                     (9) 

Where [H] Is A Positive And Symmetric Matrix, It Is 

Clear That If We Write Directly The Equation (7) As: 

      020
1

q
1

qMK



                             (10) 

Where [K]
-1

is the inverse of the matrix [K], the symmetry 

property is not always preserved. Therefore, it is necessary 

to write the matrix [K] using the Cholesky decomposition
 [7]

: 

     TLLK                                     (11) 

[L]
T
 is the transpose of the matrix [L] and [L] is a lower 

triangular matrix. The Equation (7) is written: 
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By writing Equation (12) as similar form as Equation (7): 
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LMLH


                    (13) 

    0qLX                                  (14) 

2

1


                                       (15) 

V. RESULTS 

The modal analysis of the structure for different loading 

rates is based on the analytical method used to solve the 

equation of free vibrations. The programming of this 

resolution method was performed under the Matlab software. 

The Tables 3-6 show the frequencies obtained by model and 

experiment for the laminates studied. The decrease in 

frequency for the four materials studied for different loading 

rates shows the loss of stiffness 
[15-16]

. 

TABLE IVVVI FREQUENCIES OBTAINED BY THE MODEL AND EXPERIMENT 

FOR THE MATERIAL U  

Experimental frequencies with 

Different loading rates (Hz) 

Modelling frequencies with 

Different loading rates (Hz) 

0% 50% 90% 0% 50% 90% 

34.800 34.370 33.570 35.570 35.481 35.392 

210.60 208.00 203.00 207.67 207.15 206.63 

581.90 571.90 558.00 525.84 524.52 523.20 

TABLE VIIV FREQUENCIES OBTAINED BY THE MODEL AND EXPERIMENT FOR 

THE MATERIAL C1  

Experimental frequencies with 

Different loading rates (Hz) 

Modelling frequencies with 

Different loading rates (Hz) 

0% 50% 90% 0% 50% 90% 

28.00 27.50 26.87 27.205 26.516 26.376 

178.75 173.12 167.00 180.27 175.71 167.05 

500.00 485.00 470.00 436.26 425.22 422.97 

TABLE V FREQUENCIES OBTAINED BY THE MODEL AND EXPERIMENT FOR 

THE MATERIAL C2  

Experimental frequencies with 

Different loading rates (Hz) 

Modelling frequencies with 

Different loading rates (Hz) 

0% 50% 90% 0% 50% 90% 

31.87 31.87 30.65 32.497 32.005 31.339 

193.00 193.00 188.00 191.96 189.06 185.12 

524.00 521.00 511.00 444.16 437.45 428.33 

TABLE VVIII FREQUENCIES OBTAINED BY THE MODEL AND EXPERIMENT 

FOR THE MATERIAL C3  

Experimental frequencies with 

Different loading rates (Hz) 

Modelling frequencies with 

Different loading rates (Hz) 

0% 50% 90% 0% 50% 90% 

35.6 34.40 34.00 35.076 34.546 34.008 

216.80 213.00 210.60 219.29 215.98 212.61 

603.00 589.60 584.00 444.46 437.74 430.92 

VI. NUMERICAL EVALUATION OF DAMPING 

The calculation of loss factors of modal energies for the 
first three modes of vibration of the structure is done by 
evaluating the ratio of the strain energies of beam for 
damaged and undamaged cases 

[17]
. 

The modal strain energy of the beam for the undamaged 
case is given by: 

     nG
T

nn K
2

1
U                         (16) 

With: 

 [KG]: Stiffness matrix; 

 [Øn]: Eigenvector of displacement. 

The modal strain energy for damaged case is given by: 

     nD
D

G
T

nDnD K
2

1
U                          (17) 

With: 

 [KG
D
]: Stiffness matrix (damaged case); 

 [ØnD]: Eigenvector of displacement (damaged case). 

The loss factor coefficient 
[17]

 for different stages of 
damage (different loading rates) is given by: 

n

nDn

n

n
n

U

UU

U

U 



                    (18) 

With: 

 Un: modal strain energy for undamaged case ; 

 UnD: modal strain energy for damaged case. 

Figs. 8-12 report the results deduced for the damping by 
finite element analysis for the first three modes. The 
evaluation of laminate damping by modelling takes account 
of the variation of the loss factor ηn with frequency. The 
material damping is derived as function of laminate 
orientation. 

 
(a) 

 
(b) 

Fig. 8 Modelling results obtained for the damping as function of the 
frequency for U material in the case: (a) load 50 % and (b) load 90 % 
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(a) 

 

(b) 

Fig. 9 Modelling results obtained for the damping as function of the 
frequency for C1 material in the case: (a) load 50 % and (b) load 90 % 

 

(a) 

 

(b) 

Fig. 10 Modelling results obtained for the damping as function of the 
frequency for C2 material in the case: (a) load 50 % and (b) load 90 % 

 

(a) 

 

(b) 

Fig. 11 Modelling results obtained for the damping as function of the 
frequency for C3 material in the case: (a) load 50 % and (b) load 90 % 

 

Fig. 12 Comparison between damping of different laminates studied for 
different loading rates (50 % - 90 %) 

For 0° orientation of the laminate [(0)]8, it is observed 

that damping increases when the frequency and the loading 

rates are increased (Fig. 8). The stacking sequence leads to a 

more variation of damage as function of the loading rates is 

increased, two cases are shown: 

 When the loading rate is 50 % (Figs. 9-12): it is 

observed that damping is slightly higher for C1 than that 

laminates U, C2 and C3. The damping  of the laminates U, 

C2 and C3 is clearly reduced (about 90 % for U , 40 % for 

C2 and 40 % for C3); 

 When the loading rate is 90 % (Figs. 9-12): the 

damping behaviour is practically as function of the fibre 

orientation which is more important than in the case in 50 % 

of loading rates. The maximum rate of damping for C2  



Journal of Control Engineering and Technology (JCET) 

JCET Vol. 3 Iss. 2 May 2013 PP. 84-89 www.ijcet.org ○C  American V-King Scientific Publishing 

89 

laminate is (7 %). The damping of laminate U, C1 and C3 is 

clearly reduced (about 85.71 % for U, 14.29 % for C1 and 

14.29 % for C3). 

VII. CONCLUSIONS 

An evaluation of the damping of different composite 

materials was presented based on a finite element analysis. 

The analysis derived the strain energy stored in the different 

materials. 

The damping behaviour is practically as function of the 

fibre orientation which is more important when the loading 

rate is increased. 

The decrease in frequency of different loading rates 

shows the loss of stiffness for the four studied materials. 

This evolution constitutes one of the most used methods to 

follow the progression of fatigue damage of the composites. 

The loss factors of the composite materials can be 

deduced by applying modelling to the flexural vibrations of 

free-clamped beams. The loss factors of the laminates with 

different stacking sequences are very higher than the 

laminate with 0° orientation for different loading rates. 
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