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Abstract- Implementation of a data fusion system is a 
multifaceted task that involves application of single or many 
techniques. The factors affecting the performance of data 
fusion system depends on many parameters such as selection of 
technique, selection of sensors and type of data and 
introduction of noise.  In this paper, Kalman filtering 
technique is used to fuse the data obtained from accelerometer 
and gyroscope in an inertial measurement unit (IMU). The 
study explores the effect of measurement noise and process 
noise on data fusion performance.  
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I. INTRODUCTION 

An inertial measurement unit (IMU) is an electronic 
device that measures and reports on a craft's velocity, 
orientation, and gravitational forces, using a combination of 
accelerometers and gyroscopes. IMUs are typically used to 
maneuver aircraft, including unmanned aerial vehicles 
(UAV), among many others, and spacecraft, including 
shuttles and satellites. Recent developments allow for the 
production of electromagnetic interference (EMI) enabled 
global positioning system (GPS) devices. An IMU works by 
detecting the current rate of acceleration using one or more 
accelerometers, and detects changes in rotational attributes 
like pitch, roll and yaw using one or more gyroscopes. A 
detail description of principle, working and application of 
IMU could be found in [1-2]. 

Data fusion techniques can combine data from multiple 
information sources to achieve improved accuracies and 
more specific inferences than by the use of a single source 
alone [3]. Most critical issues related to the data fusion 
implementation are requirements analysis, sensor selection, 
architecture selection, algorithm selection, software 
implementation and testing & evaluation. Sensor fusion is 
concerned with distributed detection, sensor registration, 
data association, state estimation, target identification, 
decision fusion, user interface and database management. It 
uses many techniques such as the method of least squares, 
Bayesian method, Dempster-Shafer’s method, Fuzzy logic, 
Kalman filtering and neural networks etc [4]. One of the most 
important factor on which the performance of data fusion 
system depends is the selection of appropriate technique. 
The choice of the most appropriate algorithm depends on the 
complexity of the target problem, obviously the more 
complex the problem is, the algorithm also becomes more 
complex. As commented by Hall and Garga [5], there is no 
perfect algorithm that is optimal under all conditions.  

In this paper, the authors have used Kalman filtering 
technique to fuse data from accelerometer and gyroscope in 
an IMU. Kalman filter output and estimation error are 
evaluated. Simulation is carried out under various conditions 
of process and measurement noises. The effect of process 
noise and measurement noise on estimation error is tested. It 
is investigated that the measurement noise has significant 
role to increase estimation error in data fusion process. 

II. KALMAN FILTER 

Kalman filtering [6] is a well-established methodology for 
model-based fusion of sensor data [7-9]. The traditional 
Kalman filter requires exact knowledge of the plant model 
and the statistics of the process noise and measurement 
noise.  Varieties of methods have been developed to 
simultaneously estimate the covariances with the state [10]. 

Shi et al [11] presented an alternative approach to consider 
the influence on the estimation from unknown but fixed 
errors in the noise statistics. The   bounds were given on the 
estimation error both for the conventional Kalman filter but 
also for a sensor fusion scheme suitable for a sensor network 
implementation. A new performance bound is derived for a 
sensor fusion scheme that explicitly takes the model 
uncertainty of the underlying processes and sensors into 
account. Based on the classical Kalman filter, the estimation 
error covariance is computed for given uncertainties of the 
process and measurement noise covariances.  

Kosanam and Simon [12] discussed robustness of Kalman 
filtering against uncertainties in process and measurement 
noise covariances. A new filter was proposed which 
addresses the uncertainties in process and measurement 
noise covariances and gives better results than the standard 
Kalman filter. The filter was used to estimate the health 
parameters of an aircraft gas turbine engine. 

Most of the recent research in the robust filtering field 
has dealt with bounded parameter uncertainty or Kalman 
filtering with an H-infinity norm constraint. Petersen [13] 
designed robust state feedback controllers and steady state 
robust state estimators for uncertain linear systems with 
norm bounded uncertainties. In this method, a guaranteed 
cost quadratic controller was proposed and a quadratic 
guaranteed estimator was developed based on the duality. 
The uncertainties in this work had known upper bounds. 
Lihua [14] proposed a state estimator which guarantees a 
bound on estimation error covariance for all admissible 
uncertainties in the state and output model. Haddad [15] 
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considered parametric uncertainties in plant model. An 
estimation error bound suggested by multiplicative white 
noise modeling is utilized for guaranteeing robust estimation 
over a specified range of parameter uncertainties.  

Although Kalman filter is optimal and robust filter used 
in various real time data fusion applications, but 
introduction of noise and other inaccuracies have their own 
futile effect on the performance. The authors have focused 
on estimation error encountered during fusion process.  

III. THE STATE ESTIMATION PROBLEM 

This analysis is based on [16] and [17], which applies to 
the continuous time systems, in this paper to discrete time 
systems and applied to IMU system.  

Consider a linear stochastic system represented by 

x k+1=Axk + Bu uk + Bwwk                       (1) 
yk = Cxk + vk 

Here x is the system state, y is the measurement vector, u 
is the input vector, w is the process noise vector and v is the 
measurement noise vector. A, Bu, Bw and C are matrices of 
appropriate dimensions. W and v in this case are assumed to 
be mutually independent and zero mean white noise. The 
covariances of w and v are given as  

E[wkwT
k] = Q              (2) 

E[vkvT
k] = R 

The state estimate equations before and after the 
measurements are processed are given as [7] 

           (3)                                                                                    
Where Kk is the Kalman filter gain. 

The estimation error is defined as follows: 

 
From Equations (1) and (3) the estimation error satisfies 

the equation   

           (4) 
Using the noise characteristics in Equation (2) the steady 

state error covariance P becomes solution to the following 
equation [18]: 

   (5)                                                          
Where P is defined as   

P = E[eeT]                                 (6) 
When R = 0 (no measurement noise), Equation (5) 

becomes 

X1 = (A-AKC) X1(A-AKC)T + BwQkBw
T            (7)                           

 Where X1 is the estimation error covariance due to process 
noise only. 

When Q = 0 (no process noise), Equation (5) becomes 

X2 = (A-AKC) X2(A-AKC)T + (AK)R(AK)T         (8) 
Where X2 is the estimation error covariance due to 
observation noise only. 

Adding Equations (7) and (8) gives the following: 

(X1+X2) = (A-AKC)(X1+X2)(A-AKC)T 

 +BwQBw
T+(AK)R(AK)T                           (9) 

This shows that when Q, R are not zero at the same time, 
the solution P of Equation (5) becomes: 

P=X1+X2    (10) 
This is the estimation error covariance in the presence of 

both the process and measurement noise. Thus, it is shown 
to a linear combination of the estimation error covariance 
when only one of the noises is present. 

This linear combination helps in realizing the 
performance index of the Kalman Filter, which would be a 
linear combination of functions of X1 and X2. Therefore, in 
the standard Kalman filter, the filter gain K minimizes the 
following performance index [19]: 

J=tr[E(ekeT
k)] =tr(P)= tr(X1) + tr(X2)           (11) 

Where tr( ) denotes the trace of a matrix. If there are no 
uncertainties in the process and measurement noise 
covariances the performance index J attains a global 
minimum using the standard Kalman filter. However, if 
there were uncertainties in Q and R, J would not attain a 
minimum.  

IV. SIMULATION AND RESULTS 

Let us now consider the cases where we measure 
estimation error by plugging and unplugging process noise 
and measurement noise in the simulation environment. Here 
we shall consider four cases:  

Case 1: Kalman output and measurement of estimation 
error normally.  

Data read from 1000 samples of the accelerometer had a 
variance of 0.07701688 and gyroscope had a variance of 
0.00025556 [20]. Measurement noise and process noise are 
plugged in the code based on [21] and [22]. Data obtained 
from accelerometer and gyroscope and their fusion using 
Kalman filter are shown in Figure 1. Kalman output and 
estimation error are shown in Figure 2.   

 
Fig. 1 Kalman filter output 
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Fig. 2 Kalman filter output and estimation error 

Case 2: Measurement of estimation error without 
plugging measurement noise and process noise. 

Figure 3 shows estimation error almost negligible, as 
measurement noise and process noise are kept zero (ideal 
case).  

 
Fig. 3 Estimation error without noises (ideal case) 

Case 3: Measurement of estimation error plugging 
process noise (measurement noise is kept zero)  

Figure 4 shows the effect of process noise on estimation 
error. 

 
Fig. 4 Estimation error due to process noise 

Case 4: Measurement of estimation error plugging 
measurement noise (process noise is kept zero) 

Figure 5 shows effect of measurement noise on 
estimation error.   

 
Fig. 5 Estimation error due to measurement noise 

Finally, estimation error graph for Case 3 and Case 4 is 
plotted using least square method (LSM) [23] to precisely 
compare effects of process noise and measurement noise on 
estimation error. 

As per state estimation analysis discussed above, the 
value of Kalman gain KK decreases with increase in value of 
R, thus increasing estimation error. Measurement noise has 
significant impact on estimation error as compared to 
process noise that can be clearly seen in Figure 6.    

 
Fig. 6 Comparison of estimation errors 

V. CONCLUSION 

Data-fusion techniques have been investigated by many 
researchers and have been used in implementing several 
engineering applications. Exploring the factors, which affect 
data fusion performance by extensive analysis of data and 
technique applied, is an active research area for the 
researcher’s community. The papers presents application of 
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Kalman filtering technique to fuse data obtained from 
accelerometer and gyroscope in an IMU. Kalman filter 
output and estimation error are evaluated. The effect of 
process noise and measurement noise on estimation error is 
tested. Finally, it is explored that the measurement noise has 
significant role to increase estimation error in data fusion 
process. The future work is to test and compare affects of 
various other techniques like Dempster-Shafer’s method and 
fuzzy logic technique in data fusion process. 
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