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Abstract- It is well-known that models of genetic regulatory 
networks (GRNs) are unavoidably affected by uncertainties. 
This paper addresses the problem of estimating stable 
uncertainty sets of uncertain GRNs with guaranteed 
disturbance attenuation. Specifically, the GRNs are assumed to 
be affected by disturbances in the form of Wiener processes, 
and by uncertainties in the form of a parameter vector that 
determines the coefficients of the model via given functions. It is 
shown that estimates of the sought stable uncertainty sets can 
be obtained through a recursive strategy based on parameter-
dependent Lyapunov functions and convex optimization. Some 
examples with fictitious and real biological models illustrate the 
use of the proposed strategy.  
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I. INTRODUCTION  

As a fundamental research area in systems biology, the 
study of GRNs has become a major challenge which helps us 
to better understand the gene regulation process at the holistic 
level [1]. For example, one need to know how proteins are 
synthesized from genes that are affected by other genes, and 
how DNA, RNA and proteins interact with each other in 
order to form a complicated system which performs multiple 
biological functions [2-4]. Within the scope of the researches 
in systems biology, one significant objective of the study on 
GRNs is to have a deeper insight of the inter-gene 
interactions and relationships on a system level which will 
facilitate the diagnosis of disease [5].  

Currently, with the development of the modeling 
techniques in systems biology, by using different 
mathematical tools, it is possible to describe the network 
structure and predict potential mechanisms of GRNs more 
accurately [6-9]. Nowadays, in order to model, analyze and 
simulate GRNs, many different mathematical models have 
been proposed, such as Bayesian networks, Boolean networks, 
differential equation models. See for example [10-15] and 
references therein for a wider categorization of GRNs models. 

In the researches of GRNs, the major challenge is not 
specifying the gene network structure only, but finding and 
understanding the network dynamics and working 
mechanisms also. As far as we know, there are some main 
characteristics of GRNs which play a key role in establishing 
the mathematical model [16-21]. Firstly, GRNs are typically 
considered as biochemical dynamic systems which are 

nonlinear and high dimensional. Secondly, gene regulation is 
an intrinsically noisy process which owns to random births 
and deaths of individual molecules intracellularly and 
environment fluctuations extracellularly. Furthermore, the 
whole system is characterized with significant time delays in 
the processes of transcription, translation, diffusion and 
translocation. Finally, it is also found that gene expression 
levels tend to be continuous [25]. Motivated by the above 
characteristics, a mathematical model is required to better 
describe both the network structure and potential mechanisms 
of GRNs. In the case of differential equation model, the 
concentrations of the gene products such as mRNAs, proteins 
and other small molecules in the whole gene regulation 
system are described by positive real values governed by 
differential equations [22-24]. According to the main 
characteristics of GRNs and different equation models, the 
advantage of using such model is that one can take into 
account the detailed network dynamics and gene regulation 
mechanisms, such as individual kinetics and the interactions 
among mRNAs and proteins. 

On the other hand, since the mathematical model of GRNs 
is derived from real-world gene expression data, it is well 
known that the unavoidable modeling error brings the 
uncertainty to the whole system. Moreover, it is noted that, 
some of the fluctuations in GRNs are not entirely random, 
which also makes the mathematical model uncertain. 
Therefore, it is essential and important to consider parameter 
uncertainties during the constructing of the network models. 
Among the research aspects in GRNs, “stability analysis” is 
one of the most attractive research areas. Other than simply 
considering the stability conditions of GRNs, one problem 
arises here is the estimation of the stable uncertainty sets of 
uncertain GRNs. To the best of the authors' knowledge, up to 
now, little effort has been made towards such topics in GRNs, 
which motivates the present study. 

In this paper, we focus on the GRNs described by 
differential equation models and affected by both stochastic 
noise and parametric uncertainties [26-29]. Specifically, the 
GRNs are assumed to be affected by disturbances in the form 
of Wiener processes, and by uncertainties in the form of a 
parameter vector that determines the coefficients of the model 
via given functions. It is shown that estimates of the sought 
stable uncertainty sets can be obtained through a recursive 
strategy based on parameter-dependent Lyapunov functions 
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and convex optimization problem with linear matrix 
inequalities (LMIs). 

The paper is organized as follows. Section II introduces 
some preliminaries about uncertain GRNs. Section III 
provides the stability condition of uncertain GRN with 
disturbance attenuation, representation of polynomials and the 
description of the proposed strategy for estimating stable 
uncertainty sets. Section IV presents some illustrative 
examples with fictitious and real biology models. Finally, 
Section V provides some concluding remarks. 

II. PROBLEM FORMULATION 

Notation: 0n  denotes the origin of n
 ， 

TA denotes the 

transpose of a matrix A， I  denotes the  identity matrix， 
0 ( 0)A A> ≥ denotes a real symmetric positive definite 

(semi-definite) matrix A , A B⊗ denotes the Kronecker 
product of matrices A  and B , ( )E ⋅  represents the 

expectation operator, 2[0, )L ∞  is the space of square-

integrable vector functions over  [0, )∞ , ⋅  and 
2L

⋅

denote the Euclidean vector norm and the usual 2[0, )L ∞  
norm. Matrices, if their dimensions are not explicitly stated, 
are assumed to have compatible dimensions for algebraic 
operations. 

An uncertain GRN described by differential equations can 
be described with the model 

( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( )
( )

dm t A m t G g p t l
dt

dp t C p t D m t
d t

θ θ θ

θ θ

 = + +

 = +


         (1) 

where 1 2( ) ( ( ), ( ),..., ( ))T n
nm t m t m t m t= ∈  and 

1 2( ) ( ( ), ( ),..., ( ))T n
np t p t p t p t= ∈  are vectors 

containing the concentrations of mRNA and protein,  
rθ ∈  is a time-invariant uncertainty vector, 

( ), ( ) n nA Cθ θ ×∈  are negative definite diagonal matrices 

which contain the degradation rates, ( ) n nD θ ×∈  is a 
positive definite diagonal matrix which contains the 
translation rate, ( ) n nG θ ×∈  defines the coupling topology, 

and  ( ) nl θ ∈ is the basal rate. 

We select an activation function ( )g ⋅  which is 
monotonically increasing and ranges from 0 to 1 which 
satisfies 

( ) ( )0 , , 0,g a g b a b a b
a b

ξ−
≤ ≤ ∀ ≥ ≠

−
          (2) 

for some ξ . 

One special case of the activation function ( )g ⋅  is with 

Hill form, in such case the thi  entry of ( )g ⋅ is given by 

( )( ( )) , 0, ( ) 0
( )

H
i

i iH H
i

p tg p t p t i
p t

β
β

= > > ∀
+  

  (3) 

where H  is the Hill coefficient. 

Let * *( ( ), ( ))m pθ θ  be an equilibrium point of the 
system (1), i.e., a solution of the equations 

* *

* *

( ) ( ) ( ) ( ( )) ( ) 0

( ) ( ) ( ) ( ) 0 .
n

n

A m G g p l
C p D m
θ θ θ θ θ

θ θ θ θ

 + + =


+ =
         (4) 

Let us shift the origin to the unknown equilibrium point 
* *( ( ), ( ))m pθ θ  by defining *( )x m m θ= −  , *( )y p p θ= −  

and by letting * *( ( )) ( ( ) ( )) ( ( ))f y t g y t p g pθ θ= + − . The 
system (1) becomes 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ).
( )

dx t A x t G f y t
dt

dy t C y t D x t
d t

θ θ

θ θ

 = +

 = +


                (5) 

In order to study stochastic stability, we write the system 
(5) into 

1 2

( ) ( ( ) ( ) ( ) ( ( )))
( ( ), ( )) ( ) ( ) ( )

( ) ( ( ) ( ) ( ) ( ))

dx t A x t G f y t dt
x t y t d t v t d t

dy t C y t D x t dt

θ θ
ϕ ω ω

θ θ

= +
 + +
 = +

         (6) 

where ( ( ), ( )) nx t y tϕ ∈  is the noise intensity vector, 

( ) nv t ∈  belongs to 2[0, )L ∞ , and 1( )tω  and 2 ( )tω  are 
two independent one-dimensional Wiener processes. 

We assume that ( ( ), ( ))x t y tϕ  satisfies 

1 2( ( ), ( )) ( ( ), ( )) ( ) ( ) ( ) ( )T T Tx t y t x t y t x t H x t y t H y tϕ ϕ ≤ +
 (7) 

for some positive definite matrices 1H and 2H . 

Definition: The system (6) is said to be stochastically 
stable with disturbance attenuation γ  if the system (6) is 

asymptotically stable in mean-square for ( ) 0=v t , and 
under zero initial conditions, we have 

2 2
( ) ( )

E L
z t v tγ<                                (8) 

for all nonzero ( )v t , where ( ) ( ( ) , ( ) )T T Tz t x t y t=       and                                                     

2

2 1/ 2

0
( ) ( ( ( ) ))

E
z t E z t dt

∞
= ∫ .         

Problem: Estimate the stable uncertainty set with 
disturbance attenuation ( )stable γΘ , where  

( ) { :(6)isstochasticallystable
with disturbanceattenuation }.

r
stable γ θ

γ
Θ = ∈

                                                                                         (9) 
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III. ESTIMATION 

Here we describe the proposed estimation scheme of the 
stable uncertainty sets for GRNs with guaranteed disturbance 
attenuation. Specifically, we provide a stability condition for 
GRNs with disturbance attenuation for a candidate estimate 
of the sought set in Section III-A. Then, we explain how this 
condition can be checked through convex optimization in 
Section III-B. Finally, we provide the algorithm in Section 
III-C to estimate the stable uncertainty sets for GRNs with 
guaranteed disturbance attenuation. 

A. Stability Condition 

In this section, we propose a condition for establishing 
stability with guaranteed disturbance attenuation for a 
candidate estimate based on Lyapunov functions and sum of 
squares of matrix polynomials (SOS).   

First of all, we parameterize the uncertainty set as 

{ : ( ) 0, 1,..., }r
it i rθ θΘ = ∈ ≥ ∀ =            (10) 

where ( )it θ  are polynomials. 

Hence, we consider the system (6) with θ  constrained 
into Θ , i.e.,  

1 2

( ) ( ( ) ( ) ( ) ( ( )))
( ( ), ( )) ( ) ( ) ( )

( ) ( ( ) ( ) ( ) ( ))
.

dx t A x t G f y t dt
x t y t d t v t d t

dy t C y t D x t dt

θ θ
ϕ ω ω

θ θ
θ

= +
 + +
 = +
 ∈Θ       (11)

 

We have the following result. 

Theorem 1: Given a scalar 0γ > , suppose that there 

exist matrix polynomials ( )P θ , ( )θΛ , ( )iU θ , a 

polynomial ( )ρ θ , and a positive scalar ε , such that 

1

11

( ) ( ) ( )

( )
( ) ( )
( )
( )

r

i i
i

i

M t U I is SOS

P I is SOS
I P I is SOS
is SOS

U is SOS

θ θ θ ε

θ ε
ρ θ θ ε
θ
θ

=

− − −


−
 − −
Λ



∑

           (12) 

where 

11 12 13

12 22 23

13 23 33

11 12

12 22

1

( )

( ) ( )
( )

( ) ( )
( ) ( ( ),..., ( ))

T

T T

T

n

M M M
M M M M

M M M

P P
P

P P
diag

θ

θ θ
θ

θ θ
θ λ θ λ θ

  
  =  

   


  =    
Λ =                 (13)                                                                                      

and 

11 11 11 12
2

12 1

12 22 12 12

13 11

22 22 22 2
2

23 12

33

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) / )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ( ) / )
( ) ( ) ( )

2 ( ).

T

T

T

T

T

M P A A P P D
D P H I

M D P A P P C
M P G
M P C C P H

I
M P G
M

θ θ θ θ θ θ

θ θ ρ θ ρ θ γ

θ θ θ θ θ θ
θ θ

θ θ θ θ ρ θ

ρ θ γ

θ θ ξ θ
θ

= + +

+ + +

= + +
=

= + +

+

= + Λ
= − Λ     (14) 

Then, ( )stable γΘ ⊆ Θ .              

Proof: Let us observe that, whenever the constraints in 

(12) hold, for all rθ ∈  one has that 

1

11

( ) ( ) ( ) 0

( ) 0
( ) ( ) 0
( ) 0
( ) 0.

r

i i
i

i

M t U I

P I
I P I

U

θ θ θ ε

θ ε
ρ θ θ ε
θ
θ

=

− − − ≥


− ≥
 − − ≥
Λ ≥


≥

∑

               (15) 

Since  0ε > , it follows that 

1

11

( ) ( ) ( ) 0

( ) 0
( ) ( ) 0
( ) 0
( ) 0.

r

i i
i

i

M t U

P
I P

U

θ θ θ

θ
ρ θ θ
θ
θ

=

− − >


>
 − >
Λ ≥


≥

∑

                   (16) 

Consider any θ ∈Θ . Since  ( ) 0it θ ≥  and ( ) 0iU θ ≥ , 
it follows that 

 

11

( ) 0
( ) 0
( ) ( ) 0
( ) 0.

M
P

I P

θ
θ

ρ θ θ
θ

− >
 >
 − >
Λ ≥                          (17)  

From [27], we conclude that the system (11) is 
stochastically stable with disturbance attenuation γ .  

B. SOS Matrix Polynomials 

In this section we explain how the condition of  Theorem 
1 can be checked with convex optimization. First of all, let 

( ) n nQ θ ×∈  be a matrix polynomial of degree 2m  in 
rθ ∈ . We can express ( )Q θ  according to the square 

matrix representation (SMR) as 
{ }( ) ( ( ), , )mQ Q L Iθ α θ= ∆ +                     (18) 
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where { }( ( ), , )mQ L Iα θ∆ +  denotes the notation 

{ } { }

{ }

( ( ), , ) ( ) ( ( ))
( ),

m m T

m

Q L I I Q L
I

α θ θ α

θ

∆ + = ⊗ +

⋅ ⊗         
(19) 

( , ) ( , )T n q m n q mQ Q σ σ×= ∈  is such that 

                 { }( ) ( , , ),mQ Q Iθ θ= ∆                      (20) 

( ) ( )TL Lα α= is a linear parametrization of 

( , ) ( , )

{ }

{ :
( , , ) 0, }

T n q m n q m

m r

L L
L I

σ σ

θ θ

×= = ∈

∆ = ∀ ∈





L

           (21) 

and ( , , )q n mµα ∈ is a free vector  with dimension 

1( , , ) ( ( , )( ( , ) 1)
2

( 1) ( , 2 )).

q n m n q m n q m

n q m

µ σ σ

σ

= +

− +              (22) 

The SMR allows one to establish whether ( )Q θ  is SOS, 
i.e., 

( ) ( ) ( )T
i i

i
Q N Nθ θ θ=∑                        (23) 

for some matrix polynomials ( )iN θ . Indeed, ( )Q θ  is SOS 
if and only if there exists α and satisfying the LMI 

( ) 0Q L α+ ≥                                  (24) 

which can be established by solving a convex optimization 
problem. 

See also [29] for further details on SOS polynomials and 
the SMR. 

Hence, the condition of Theorem 1 can be checked with a 
system of LMIs by imposing that the matrix polynomials in 
(12) are SOS with the SMR according to (24).  

C. Estimation Algorithm  

Now, let us consider the estimation of the stable 
uncertainty set with disturbance attenuation ( )stable γΘ .  The 
idea is to use Theorem 1 to check the stability of the GRN 
with disturbance attenuation over hyperrectangles. 
Specifically, if stability with disturbance attenuation γ  can 
be ensured over a given  hyperrectangle, then such 
hyperrectangle is guaranteed to belong to ( )stable γΘ . 
Otherwise, the hyperrectangle is divided into a number of 
smaller hyperrectangles, and the procedure is recursively 
performed for each  hyperrectangle. 

Hence, let us denote with S  the generic hyperrectangle 
with extremes , rθ θ− + ∈ , i.e., 

{ : [ , ], 1,..., }.r
i i iS i rθ θ θ θ− += ∈ ∈ =

         (25) 

Let us observe that Θ coincides with S by choosing 

( ) ( )( ), 1,..., .i i i i it i rθ θ θ θ θ− += − − =             (26) 

Let us denote with ( )LMI S the system of LMIs built for 
checking the condition of Theorem 1 with such a choice for 

( )it θ . Let l  be a nonnegative integer, and define the sought 

algorithm ( , )E EST S l=  as follows: 

Step 1: If 0l = , set E =∅ and exit. 

Step 2: If ( )LMI S holds, set E S= and exit. 

Step 3: Divide S  into disjoint hyperrectangles 1,..., kS S . 

Step 4: Set 
1

( , 1)
k

i
i

E EST S l
=

= −


 and exit. 

The above algorithm is started with an initial 
hyperrectangle INIS , chosen sufficiently large in order to 

contain ( )stable γΘ  if possible. In fact, the estimate returned 

by the  algorithm is a inner estimate of INIS , i.e. 

.INIE S⊆                                  (27) 

The parameter l  is an integer that defines the accuracy of 
the estimate. In particular， the larger l  the more accurate is 
the estimate. 

IV. EXAMPLES 

In this section we present some numerical examples in 
order to demonstrate the main steps of the proposed algorithm. 

A. Example 1 

Let us consider system (6) with 2H = ,  1β = ,  2n = , 
2r =  and 

1

1

1

0.9 0.5 0
( )

0 1

0.8 0.3 0
( )

0 1 0.4

A

C

θ
θ

θ
θ

θ

− + 
=  − 

− − 
=  − + 

 

1

1

2

2

0.9 0.2 0
( )

0 1 0.3

0 0.1 0.4
( ) .

0.9 0.5 0

D

G

θ
θ

θ

θ
θ

θ

+ 
=  + 

− − 
=  − + 

 

It is easy to know that  ξ   is less than 0.65  in the sector 

condition (2), and we set the noise intensity ( ( ), ( ))x t y tϕ  as 

2

1
( ( ), ( )) 0.05[ ( ) ( )] .i i j

j
x t y t x t y t iϕ

=

= + ∀∑         (28) 

Then, let us consider the proposed algorithm in Section III. 
We select a guaranteed disturbance attenuation 5γ = , and 
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choose 1 2 0.1H H I= = . Since 2r = , we have 2
iθ ∈ . 

With 1l = , let us check the stability condition ( )LMI S  

within the area 1 [ 4, 4]θ ∈ − , 2 [ 4, 4]θ ∈ − , i.e., INIS , then the 

stable uncertainty set E  we get in this step is shown in 
Figure 1a. With 2l = , we divide the rectangle S  into 
smaller rectangles iS , and the stable uncertainty set E  we 
get in this step is shown in Figure 1b. Proceeding in this way, 
with 3l =  we continue to divide the rectangles into smaller 
ones, and the stable uncertainty set E  we get in this step is 
shown in Figure 1c. 

 
(a) 

 
(b) 

 
(c) 

Figure 1.  Example 1: With γ=5, estimates of the steady states with (a):  l=1, 
(b): l=2, (c): l=3. Within the rectangle: white-stable area, gray-undecided 

area (maybe stable or may not). Outside the rectangle: unstable area. 

B. Example 2 

In this example we illustrate the application of the 
proposed algorithm to a real biological system, specifically 
the repressilator which has been investigated in Escherichia 
coli [30]. In this system, the repressilator is a cyclic negative-
feedback loop comprising three repressor genes (lacl, tetR 
and cl) and their promoters and has the form 

( ) ( ) (1 ( ( )))

( ) ( ( ) ( ))

, ,
, ,

repi
i i i

repi
i i i

dm t m t f p t
dt

dp t p t m t
dt

i lacl tetR cl
j cl lacl tetR

α

β

 = − + −

 = − −

=

 =

            (29) 

where the activation function ( )f ⋅  is with Hill form 

( )( ( )) .
1 ( )

H
i

i H
i

p tf p t
p t

=
+

                            (30) 

In (29) ( )im t  and ( )ip t  are the concentrations of the 
three mRNAs and repressor-proteins. Now, let us consider the 
network parameters rep

iα and rep
iβ  over a set of possible 

coefficients, in particular 

1 1 2 1

2 1 2 2

3 1 2 3

0.8 0.3 0.4 0.5

0.5 0.3 0.2 1

1 0.5 0.2 1.5.

rep rep

rep rep

rep rep

α θ θ β

α θ θ β

α θ θ β

= + − =

= + + =

= − + =

           (31) 

By rewriting this repressilator in the form of the system 
(6): we have 2H = ,  3n = , 2r =  and 

1 0 0
( ) 0 1 0

0 0 1

0.5 0 0
( ) 0 1 0

0 0 1.5

A

C

θ

θ

− 
 = − 
 − 
− 
 = − 
 − 

 

0.5 0 0
( ) 0 1 0

0 0 1.5
D θ

 
 =  
  

 

1 2

1 2
,

1 2

0.8 0.3 0.4 ( , ) (1,3)
0.5 0.3 0.2 ( , ) (2,1)

( )
1 0.5 0.2 ( , ) (3, 2)

0 .

i j

if i j
if i j

G
if i j

otherwise

θ θ
θ θ

θ
θ θ

− − + =
− − − == − + − =


 

Then, let us consider the proposed algorithm in Section III. 
Let us select 1 2 0.1H H I= = and 2r = . With 1l = , let us 

check the stability conditions ( )LMI S  within INIS  
( 1 [ 3,3]θ ∈ − , 2 [ 3,3]θ ∈ − ) with different guaranteed 
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disturbance attenuation γ . By choosing 1.2γ = , the 
estimated stable uncertainty set E  is shown in Figure 2a. By 
choosing 1.3γ = , the estimated stable uncertainty set E  is 
shown in Figure 2b. We hence conclude that, with the same 
size of the rectangle S , by choosing different guaranteed 
disturbance attenuation γ , we will have different estimated 
stable uncertainty set E .  

 
(a) 

 
(b) 

Figure 2.  Example 2: With l=1, estimates of the steady states with different 
guaranteed disturbance attenuation γ. (a): γ=1.2. (b): γ=1.3.  Within the 

rectangle: white-stable area, gray-undecided area (maybe stable or may not). 
Outside the rectangle: unstable area. 

V. CONCLUSION 

This paper has addressed the problem of the estimation of 
stable uncertainty sets with guaranteed disturbance 
attenuation for uncertain GRNs. Specifically, it has been 
shown that estimates of the sought stable uncertainty sets can 
be obtained through a recursive strategy based on parameter-
dependent Lyapunov functions and convex optimization. 
Some examples with fictitious and real biological models 
have been used to illustrate the use of the proposed strategy. 
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