
Journal of Control Engineering and Technology (JCET) 

JCET Vol. 4 Iss. 1 January 2014 PP. 37-49 www.ijcet.org © American V-King Scientific Publish 
37 

Modelling, Analysis and Control of Blowing-
Venting Operations in Manned Submarines 

Roberto Font1, Javier García-Peláez2, José A. Murillo3,  Francisco Periago4 
1,3,4Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 

2Direction of Engineering, DICA, Navantia S.A., 30205 Cartagena, Spain  
1roberto.font@gmail.com;2jgpelaez@navantia.es; 3alberto.murillo@upct.es4f.periago@upct.es 

 
 

Abstract- Motivated by the study of the potential use of blowing 
and venting operations ofballast tanks in manned submarines 
as a complementary or alternative control systemfor 
manoeuvring, we first propose a mathematical model for these 
operations. Then weconsider the coupling of blowing and 
venting with the Feldman, variable mass, coefficient based 
hydrodynamic model for the equations of motion. The final 
complete modelis composed of a system of twenty-four 
nonlinear ordinary differential equations. In asecond part, we 
carry out a rigorous mathematical analysis of the model: 
existence of asolution is proved. As one of the possible 
applications of this model in naval engineeringproblems, we 
consider the problem of roll control in an emergency rising 
manoeuvreby using only blowing and venting. To this end, we 
formulate a suitable constrained,nonlinear, optimal control 
problem where controls are linked to the variable apertureof 
blowing and venting valves of each of the tanks. Existence of a 
solution for thisproblem is also proved. Finally, we address the 
numerical resolution of the controlproblem by using a descent 
algorithm. Numerical experiments seem to indicate that,indeed, 
an appropriate use of blowing and venting operations may help 
in the controlof this emergency manoeuvre. 

Keywords-Ballast Tanks; Manned Submarines; Blowing-
Venting Operations; Optimal control; Numerical Simulations. 

I. INTRODUCTION 

Manned submarines are equipped with several ballast 
tanks distributed along its hull. When filled with water, they 
contribute with the submarine mass allowing it to submerge. 
Duringan unexpected event or emergency, like on board fire 
or flood, they act as a safety mechanismto drive the vehicle 
to the surface: air is blown into the ballast tanks from very 
high pressurebottles expelling the water out of the tanks. 
The submarine loses weight, its buoyancy ishigher, and it 
can emerge quicker. In the last years, several works have 
addressed theseemergency rising manoeuvres (see [1, 2, 17, 
18] and the references given there). To fill thetanks with 
water again, air is vented out of the ballast tanks. A valve 
located at the top ofeach of the tanks is opened, air escapes 
outside, and water flows back into the tanks. 

Emergency blowing is considered a potentially 
dangerous manoeuvre and is seldom performed in full scale 
tests. The very high costs associated with scale model tests, 
on the other hand, make them prohibitive for many navies 
and, in any case, suitable only for the later stages of 
development. In this context, numerical simulation becomes 
a much more affordable alternative and an extremely useful 
tool,particularly during the preliminary stages of design or 
to test new concepts.  

Our first aim in this paper is to obtain a mathematical 
model for the blowing and venting processes and their 
influence on vehicle motion. The ability to simulate 
manoeuvres involving blowing and venting can serve naval 
architects to a) fit several parameters of ballasting and 
deballasting systems (such as size of ballast tanks and/or 
blowing and venting valves) during the preliminary state of 
design of a prototype and b) improve the understanding of 
the emergency manoeuvres and its associated difficulties. 

The issue of modelling the blowing of ballast tanks has 
been addressed, for instance, in [2] and [18]. Up to the best 
knowledge of the authors, venting has not been addressed so 
far, and most importantly, the coupling of both processes as 
a control system has not beenconsidered before. In Section 
II we propose a model for a coupled system of blowing-
venting operations. For the particular case where only 
blowing is considered, the model presented in this work was 
numerically compared in [7] with the one proposed by Watt 
[18] giving similar results, but also showing the ability to 
capture some phenomena that were overlooked by that last 
model. Then, these two processes are coupled with the usual 
Feldman's coefficient based hydrodynamic model for the 
equations of motion (see [6] and more precisely [11]) which, 
although some more accurate models such as the one 
considered in [13] are being considered in the literature, are 
the standard in manned submarines. We notice that, since 
the mass of the submarine changes with blowing-venting 
operations, some of the parameters (e.g., moments and 
products of inertia, weight, mass, etc...) that remain constant 
in Feldman's model are, in our case, time dependent. 
However, as it is usual in manned submarines (see for 
instance [17, 18]) and also in surface ships [10], our model 
is a quasi-steady variable mass model in the sense that the 
term 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  which appears in Newton's second law is 
neglected. A justification of this fact is included at the end 
of Subsection II.B. 

Our second objective is to analyze the effectiveness of 
blowing-venting operations as acomplementary control 
mechanism. Indeed, buoyancy control could improve 
performanceduring rising manoeuvres and also be an 
invaluable tool when the control surfaces arenot effective 
due to the low (or vanishing) vehicle velocity. This is the 
case of underwaterhovering, the action of statically keep a 
desired depth. For manned submarines, accuratehovering is 
essential, for example, for safe swimmers delivery, cover 
supply replacement orthe deployment and recovery of 
AUVs. As a first step in this direction, we test the abilityof 

mailto:1first.author@first-third.edu
mailto:1first.author@first-third.edu
mailto:1roberto.font@gmail.com
mailto:2jgpelaez@navantia.es
mailto:3alberto.murillo@upct.es
mailto:3alberto.murillo@upct.es


Journal of Control Engineering and Technology (JCET) 

JCET Vol. 4 Iss. 1 January 2014 PP. 37-49 www.ijcet.org © American V-King Scientific Publish 
38 

blowing-venting control to improve roll stability during a 
typical emergency manoeuvre.To this end, in Section III we 
model such a manoeuvre as a constrained, nonlinear, 
optimalcontrol problem which has the aperture of blowing-
venting valves of each of the tanks as thecontrol variables. 
The underlying state law is composed of a nonlinear system 
of 3N + 12 ordinary differential equations (ODE's), where N 
is the number of ballast tanks. 

The mathematical analysis of the model is presented in 
Section IV. Finally, for the numerical resolution of the 
optimal control problem we use an open loopapproach 
which is enough to comply with the goals a) and b) 
described above. Precisely,we implement a gradient descent 
method as in [11]. The performance of the algorithmis 
illustrated in Section V through the numerical simulation of 
an emergency manoeuvre.Results seem to indicate that 
blowing-venting operations may help in a significant way 
tothe control of this type of manoeuvres. 

 
Fig. 1  Variables and coordinate systems. 

II. MATHEMATICAL MODELLING 

The three-dimensional equations of motion for an 
underwater vehicle are usually described by using two 
coordinate frames: the moving coordinate frame which is 
fixed to the vehicle and is called the body-fixed system, and 
the earth-fixed reference frame which is called the world 
system. The position and orientation of the vehicle are 
described in the world system while the linear and angular 
velocities are expressed in the body-fixed coordinate system. 
These quantities are defined according to SNAME notation 
[9] as 

𝜼𝜼(𝑑𝑑) = [𝑥𝑥(𝑑𝑑),𝑦𝑦(𝑑𝑑), 𝑧𝑧(𝑑𝑑),𝜙𝜙(𝑑𝑑), 𝜃𝜃(𝑑𝑑),𝜓𝜓(𝑑𝑑)] 

and 

𝝂𝝂(𝑑𝑑) = [𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑),𝑤𝑤(𝑑𝑑), 𝑝𝑝(𝑑𝑑), 𝑞𝑞(𝑑𝑑), 𝑟𝑟(𝑑𝑑)] 

where𝑑𝑑 is the time variable,𝜼𝜼(𝑑𝑑) denotes the position and 
orientation of the vehicle in the world system, and 𝝂𝝂(𝑑𝑑) is 
the vector of linear  (𝑢𝑢is surge velocity, 𝑣𝑣is sway velocity 
and 𝑤𝑤is heave velocity) and angular velocities (𝑝𝑝is roll rate, 
𝑞𝑞is pitch rate and 𝑟𝑟 isyaw rate). See Figure 1. 

The mathematical model for the equations of motion is 
based on Gertler and Hagen's [12] six degree of freedom 
(DOF) submarine equations of motion, which were revised 
by Feldman [6]. Adapting these general equations to the 
particular characteristics of a prototypedeveloped by the 
company Navantia S.A. Shipyard Spain, a very similar 
coefficient based hydrodynamic model was analyzed in [11, 
15]. This latter model will be the starting point for the more 
general model that we will introduce in this section. For a 
detailed description of these equations  and the value of the 
hydrodynamic coefficients and the geometric parameters we 
refer to [11,14].  

A. Blowing and venting model 

As shown in Figure 2, the blowing-venting system is 
composed of ballast tank, pressure bottle, blowing valve and 
venting valve. When the blowing valve is opened, air flows 
into the tank increasing the pressure and forcing the water to 
flow out through the flood portlocated at the bottom of the 
tank. When the venting valve is opened, air can flow out 
from the tank. The model can be divided into four  parts: 

• Air flow from pressure bottle. 
• Air flow through venting valve. 
• Water flow through flood port. 
• Evolution of pressure in ballast tank. 

Variables and symbols introduced in this section are 
summarized in Table I. 

 
Fig. 2  Blowing and venting processes. 

TABLEI. VARIABLES AND SYMBOLS 

𝐴𝐴 Area in nozzle throat (m2) 
𝐴𝐴ℎ  Outlet hole area (m2) 
𝐴𝐴𝑣𝑣  Venting pipe cross-section (m2) 
𝐶𝐶ℎ  Outlet hole coefficient 
𝐻𝐻𝑑𝑑𝑡𝑡  Ballast tank height (m) 

ℎ𝑤𝑤𝑤𝑤 (𝑑𝑑) Height of water column in tank (m) 
𝑑𝑑𝐵𝐵(𝑑𝑑) Mass of air in ballast tank (kg) 
𝑑𝑑𝐹𝐹(𝑑𝑑) Mass of air in pressure bottle (kg) 
�̇�𝑑𝐹𝐹(𝑑𝑑) Mass flow rate from pressure bottle (kg/s) 
�̇�𝑑𝑣𝑣(𝑑𝑑) Mass flow rate through venting valve (kg/s) 
𝑝𝑝𝐵𝐵(𝑑𝑑) Pressure in ballast tank (Pa) 
𝑝𝑝𝑒𝑒𝑥𝑥𝑑𝑑 (𝑑𝑑) Pressure outside the venting system (Pa) 
𝑝𝑝𝐹𝐹(𝑑𝑑) Pressure in bottle (Pa) 
𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴(𝑑𝑑) Pressure outside the outlet hole (Pa) 
𝑞𝑞𝐵𝐵(𝑑𝑑) Water flow through outlet hole (m3/s) 
𝑇𝑇𝐵𝐵  Water temperature (K) 
𝑇𝑇𝐹𝐹(𝑑𝑑) Temperature in pressure bottle (K) 
𝑉𝑉𝐵𝐵0 Initial air volume in ballast tank (m3) 
𝑉𝑉𝐵𝐵(𝑑𝑑) Volume of air in ballast tank (m3) 
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𝑉𝑉𝐵𝐵𝐵𝐵  Ballast tank volume (m3) 
𝑉𝑉𝐹𝐹  Pressure bottle volume (m3) 

(𝑥𝑥𝑏𝑏 ,𝑦𝑦𝑏𝑏 , 𝑧𝑧𝑏𝑏) Location of tank geometrical center (m) 
𝑧𝑧ℎ  Outlet hole distance from origin (m) 
𝑧𝑧𝑑𝑑  Tank top distance from origin (m) 
𝑧𝑧𝑣𝑣  Venting valve distance from origin (m) 
𝛾𝛾 Isentropic constant 
𝜌𝜌 Seawater density (kg/m3) 

1)  Air flow from pressure bottle.  

When the blowing valve is opened, the air in the bottle is 
blown into the tank through a nozzle. Pressure losses and 
heat transfer in the tube that connects the bottle and the tank 
are, for the moment, neglected. However, as we will see 
later on, pressure losses canbe indirectly taken into account. 
Under the above conditions, we need to study the one 
dimensional steady flow of an ideal compressible gas. This 
can be found in any classic text on fluid mechanics (see for 
example [4]) so that we include next the resulting equation 
(see also [8] for more details): 

 
�̇�𝑑𝐹𝐹(𝑑𝑑) = 𝐴𝐴�

𝑑𝑑𝐹𝐹(𝑑𝑑)𝛾𝛾+1

𝑑𝑑𝐹𝐹0
𝛾𝛾 𝑉𝑉𝐹𝐹

�𝜇𝜇(𝑝𝑝𝐵𝐵(𝑑𝑑),𝑑𝑑𝐹𝐹(𝑑𝑑)) (1) 

with 
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Since the initial mass flow rate depends only on the 
initial conditions in the bottle, it can be considered as a 
constant with value 
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This initial mass flow rate has been measured for several 
blowing intensities. Let �̇�𝑑𝐹𝐹𝑑𝑑𝑚𝑚𝑥𝑥 be thismeasured maximum 
mass flow rate. Then we take 
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By doing so, we ensure that the initial mass flow rate 
calculated coincides with the realmeasured value. This way, 
although pressure losses are not considered in the model, 
theyare indirectly taken into account. 

2)  Air flow through venting valve.  

Equations for the air flow from the tank can be obtained 
analogously to the ones used for the mass flow from the 
bottle.The variation in the mass of air in the ballast tank is 
the difference between the mass flow rate from the bottle 
and the mass flow rate through the venting valve. Thus, 

 
�̇�𝑑𝐵𝐵(𝑑𝑑) = −�̇�𝑑𝐹𝐹(𝑑𝑑)− �̅�𝜇(Π(𝑑𝑑))

𝐴𝐴𝑣𝑣𝑝𝑝𝐵𝐵(𝑑𝑑)
�𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵(𝑑𝑑)

 (4) 

where Π(𝑑𝑑) = 𝑝𝑝𝑒𝑒𝑥𝑥𝑑𝑑 (𝑑𝑑)
𝑝𝑝𝐵𝐵 (𝑑𝑑)

, 𝑝𝑝𝑒𝑒𝑥𝑥𝑑𝑑 (𝑑𝑑) = 𝑝𝑝𝑚𝑚𝑑𝑑𝑑𝑑 + 𝜌𝜌𝑔𝑔(𝑧𝑧 + 𝑧𝑧𝑣𝑣 −
𝑥𝑥𝑏𝑏 sin𝜃𝜃) being the pressure outside the venting valve, and 

�̅�𝜇(Π) = �

�̅�𝜇𝑑𝑑𝑚𝑚𝑥𝑥 , Π ≤ Π𝑤𝑤𝑟𝑟𝑐𝑐𝑑𝑑
−66.97Π2 − 52.70Π+ 119.70

Π3 − 171.30Π2 − 75.65Π+ 294.60, Π𝑤𝑤𝑟𝑟𝑐𝑐𝑑𝑑 < Π < 1
0, Π ≥ 1

� 

withΠ𝑤𝑤𝑟𝑟𝑐𝑐𝑑𝑑 = 0.158and�̅�𝜇𝑑𝑑𝑚𝑚𝑥𝑥 = 0.355. Since the geometric 
details of the venting system are not available and 
thereforepressure losses can not be directly calculated, the 
above expression for �̅�𝜇(Π)has been obtained using a least 
squares fit of experimental data. 

3)  Water flow through flood port. 

The difference between the tank and outside pressure 
forces the water to flow in or out from the tank trough the 
flood port located at the bottom. Let us assume, in the first 
place, that the pressure in ballast tank is greater than the 
outside pressure. Then, the water flows out from the tank. A 
detailed analysis of a draining tank filled with an ideal fluid 
can be found in [4]. From Bernoulli’s equation applied at 
both sides of the port, the volume flow from the ballast 
tankis given by 

 
𝑞𝑞𝐵𝐵(𝑑𝑑) = 𝐶𝐶ℎ𝐴𝐴ℎ�

2(𝑝𝑝𝐵𝐵(𝑑𝑑)+𝜌𝜌𝑔𝑔ℎ𝑤𝑤𝑤𝑤 (𝑑𝑑)−𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴 (𝑑𝑑))
𝜌𝜌(1+𝜍𝜍ℎ ) , (5) 

where𝐴𝐴ℎ  is the outlet hole area and𝐶𝐶ℎ  is a coefficient that 
takes into account that, since theoutlet hole is actually a grid, 
the effective area is smallerthan𝐴𝐴ℎ . Finally,ℎ𝑤𝑤𝑤𝑤  is the height 
of the water column in the tank and the estimated 
coefficient𝜍𝜍ℎ = 2.5 accounts for pressure losses in the outlet 
hole. We refer to [8] for more details.If pressure in ballast 
tank is lower than the outside pressure, then water flows into 
thetank. In this case, the expression for the volume 
flowchanges its sign. 

4)  Evolution of pressure in ballast tank. 

When the blowing valve is opened the air is blown into 
the tank at a very high velocity,rapidly mixing 
withwater.This promotes good heat transfer from the water 
to the expanding air and thus we may assume that the air 
will immediately adoptthe temperature in the tank. The 
process can then be considered to be isothermal. As 
mentioned in [2], experimental results sustain this 
assumption. From the ideal gas law and the perfect gas 
equation it follows that the variation in tank pressure is 
given by 

 
�̇�𝑝𝐵𝐵(𝑑𝑑)−

𝑝𝑝𝐵𝐵(𝑑𝑑)
𝑑𝑑𝐵𝐵(𝑑𝑑) �̇�𝑑𝐵𝐵(𝑑𝑑) = −

𝑝𝑝𝐵𝐵2 (𝑑𝑑)𝑞𝑞𝐵𝐵(𝑑𝑑)
𝑑𝑑𝐵𝐵(𝑑𝑑)𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵

. (6) 

At the mathematical and numerical levels, the presence of 
the square root in this equationgenerates serious difficulties. 
Indeed, if the term inside the square root vanishes, then the 
gradient blows-up. To overcome this difficulty we have 
approximated the square root near the origin by a fourth-
order polynomial 

𝑃𝑃(𝑥𝑥) = 8.75𝑥𝑥2 − 14𝑥𝑥3 + 6.25𝑥𝑥4 
that preserves the average volume flow. To sum up, we 
consider the new function 
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and replace𝑞𝑞𝐵𝐵(𝑑𝑑)by 

 
𝑞𝑞�𝐵𝐵(𝑑𝑑) = 𝐶𝐶ℎ𝐴𝐴ℎ𝑃𝑃� �

2(𝑝𝑝𝐵𝐵(𝑑𝑑) + 𝜌𝜌𝑔𝑔ℎ𝑤𝑤𝑤𝑤 (𝑑𝑑)− 𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴(𝑑𝑑))
𝜌𝜌(1 + 𝜍𝜍ℎ ) �. (7) 

5)  Blowing and venting controlled system. 

Once a model for blowing and venting operations has 
been presented, our next goal is to usesuch a system as a 
control mechanism to improve the manoeuvrability of the 
vehicle. Tothis end, we introduce a new set of variables: the 
control variables of the blowing-ventingsystem. Let𝑠𝑠𝑐𝑐 , �̅�𝑠𝑐𝑐 ∈
𝐿𝐿∞�0, 𝑑𝑑𝑖𝑖 ; [0,1]�denote, respectively, the grade of aperture of 
blowingand venting valves of the i-th ballast tank during the 
time interval�0, 𝑑𝑑𝑖𝑖�. Introducing these control variables in 
the above equations we obtain the following set of equations 
for each tank governing the controlled evolution of the 
massof air in each pressure bottle, the mass of air in the 
corresponding tank,and its pressure: 

 
�̇�𝑑𝐹𝐹𝑐𝑐(𝑑𝑑) = 𝑠𝑠𝑐𝑐𝐴𝐴 �
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� 𝜇𝜇𝑐𝑐�𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑),𝑑𝑑𝐹𝐹𝑐𝑐(𝑑𝑑)� (8) 

 
�̇�𝑑𝐵𝐵𝑐𝑐(𝑑𝑑) = −�̇�𝑑𝐹𝐹𝑐𝑐(𝑑𝑑)− �̅�𝜇𝑐𝑐(Π(𝑑𝑑))

�̅�𝑠𝑐𝑐𝐴𝐴𝑣𝑣𝑝𝑝𝐵𝐵(𝑑𝑑)
�𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵

 (9) 

 
�̇�𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)−

𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)

�̇�𝑑𝐵𝐵𝑐𝑐(𝑑𝑑) = −
𝑝𝑝𝐵𝐵𝑐𝑐

2 (𝑑𝑑)𝑞𝑞�𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵

 (10) 

The above formulation assumes that the flow through the 
valves varies linearly with their aperture. Of course, once 
the control system were implemented in a real vehicle this 
assumption should be adapted to the particular 
characteristics of the chosen valves. The values of all the 
required geometrical parameters for the four tanks 
considered here are summarized in Table II. 

TABLEIII. BALLAST TANKS CHARACTERISTICS 

 MBT 2 MBT 3 MBT 4 MBT 5 

𝐴𝐴ℎ  0.191 0.191 0.191 0.191 

𝐴𝐴𝑣𝑣  0.0177 0.0177 0.0177 0.0177 

𝐶𝐶ℎ  0.7 0.7 0.7 0.7 

𝐻𝐻𝑑𝑑𝑡𝑡  5 5 5 5 

𝑝𝑝𝐹𝐹0  2.5 ∙ 107  2.5 ∙ 107  2.5 ∙ 107  2.5 ∙ 107  

𝑇𝑇𝐹𝐹0 293 293 293 293 

𝑉𝑉𝐵𝐵0 0.001 0.001 0.001 0.001 

𝑉𝑉𝐵𝐵𝐵𝐵  21.4 21.4 22.9 22.9 

𝑉𝑉𝐹𝐹  0.8 0.8 0.8 0.8 

𝑥𝑥𝑏𝑏  -28.6 -28.6 23 23 

𝑦𝑦𝑏𝑏  1.2 -1.2 1.7 -1.7 

𝑧𝑧𝑏𝑏  0.595 0.595 0.975 0.975 

𝑧𝑧ℎ  -2.895 -2.895 -3.897 -3.897 

𝑧𝑧𝑑𝑑  2.105 2.105 2.303 2.303 

𝑧𝑧𝑣𝑣  2.705 2.705 2.705 2.705 

B. Coupling of Blowing-Venting System With a Variable 
Mass Model for the Equations Of Motion 

As water flows in or out of the tanks there will be mass 
variations located at several points of the vehicle. It is 
necessary to account for these mass variations in the 
equations of motion. In the first place, it is necessary to 
identify which terms, formerly constant, will become time 
dependent due to its dependence with mass. In this respect, 
we need to write mass, weight, moments and products of 
inertia and location of the center of gravity as a function of 
the amount of water in the tanks. Secondly, since both the 
mass and the inertia tensor are now time varying, terms of 
the form𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥and𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥will appear in the conservation laws for 

linear and angular momentumtogether with the terms𝑑𝑑�̇�𝑥 
and 𝑑𝑑𝑑𝑑̇. 

Let us assume there are 𝑁𝑁ballast tanks with geometrical 
centers located at points (𝑥𝑥𝑏𝑏𝑐𝑐 ,𝑦𝑦𝑏𝑏𝑐𝑐 , 𝑧𝑧𝑏𝑏𝑐𝑐 ) (where the 
subscriptidenotes the i-th ballast tank). Let𝑑𝑑0 be the initial 
massof the submarine (with all tanks completely filled with 
water) and∆𝑑𝑑𝑐𝑐  the mass loss in thei-th tank. It is 0 when the 
tank is completely filled with water, and reaches its 
maximumvalue when it empties.The volume of water that 
has left the tank is equal to the volume occupied by air 
exceptfor the initial air volume in the tank,𝑉𝑉𝐵𝐵0 , which 
depends on the initial mass of air in the tank,𝑑𝑑𝐵𝐵0, and the 
initial depth. Thus, 

 Δ𝑑𝑑𝑐𝑐(𝑑𝑑) = 𝜌𝜌(𝑉𝑉𝐵𝐵𝑐𝑐(𝑑𝑑) −𝑉𝑉𝐵𝐵0)

= 𝜌𝜌 �
𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵
𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)

− 𝑉𝑉𝐵𝐵0� . (11) 

Consequently,  

 
m(t) = 𝑑𝑑0 −�Δ𝑑𝑑𝑐𝑐(𝑑𝑑)and

𝑁𝑁

𝑐𝑐=1

𝑊𝑊(𝑑𝑑) = 𝑔𝑔𝑑𝑑(𝑑𝑑) (12) 

with 𝑔𝑔the acceleration due to gravity. 

Although the vehicle buoyancy 𝐵𝐵is usually assumed to 
be constant, it is really a function of the vehicle depth 
sinceas depth increases, outside pressure compresses the 
vehicle. Let𝐵𝐵0be the buoyancy at zero depth. The buoyancy 
is assumed to be linearly dependent with respect to the 
vehicle depth in the form 

𝐵𝐵 = 𝐵𝐵0 �1−
0.0015

300
� 𝑧𝑧. 

To find expressions for the location of the center of 
gravity and moments and products of inertia we assume that 
the mass loss in each tank occurs at a point(𝑥𝑥𝑏𝑏𝑐𝑐 ,𝑦𝑦𝑏𝑏𝑐𝑐 , 𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝑑𝑑)) 
where𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝑑𝑑) is the height at which mass loss happens for 
eachtank. It varies from the top of the tank, when it is 
completely filled, to its geometric center 𝑧𝑧𝑏𝑏𝑐𝑐  when it is 
completely empty. This variation is assumed to be linear so 
that 

𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝑑𝑑) = 𝑧𝑧𝑑𝑑𝑐𝑐 −
(𝑧𝑧𝑑𝑑𝑐𝑐 − 𝑧𝑧𝑏𝑏𝑐𝑐)∆𝑑𝑑𝑐𝑐(𝑑𝑑)

∆𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑚𝑚𝑥𝑥
, 

where𝑧𝑧𝑑𝑑𝑐𝑐 is the location of the tank top and ∆𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑚𝑚𝑥𝑥 is the 
maximum value of the mass loss. From this, it is easy to 
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express the time variation of moments,  products of inertia 
and coordinates of the center of gravity. For instance,  

 
𝑑𝑑𝑥𝑥(𝑑𝑑) = 𝑑𝑑𝑥𝑥0 −��𝑦𝑦𝑏𝑏𝑐𝑐2 + 𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝑑𝑑)2�Δ𝑑𝑑𝑐𝑐(𝑑𝑑),

𝑁𝑁

𝑐𝑐=1

𝑑𝑑𝑥𝑥𝑧𝑧 (𝑑𝑑) = 𝑑𝑑𝑥𝑥𝑧𝑧0 −�𝑥𝑥𝑏𝑏𝑐𝑐𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝑑𝑑)Δ𝑑𝑑𝑐𝑐(𝑑𝑑),
𝑁𝑁

𝑐𝑐=1

𝑥𝑥𝐺𝐺 =
1

𝑑𝑑0 −∑ Δ𝑑𝑑𝑐𝑐(𝑑𝑑)𝑁𝑁
𝑐𝑐=1

�𝑑𝑑0𝑥𝑥𝐺𝐺0 −�𝑥𝑥𝑏𝑏𝑐𝑐Δ𝑑𝑑𝑐𝑐(𝑑𝑑)
𝑁𝑁

𝑐𝑐=1

� ,

 (13) 

where the subscript 0corresponds to parameters with tanks 
completely filled. 

Regarding the terms𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥,they can be considered 

negligible. Indeed, the time derivatives of vehicle mass and 
inertia tensor components are 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵��
𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)�̇�𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)2 −

�̇�𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)

� ,
𝑁𝑁

𝑐𝑐=1

𝑑𝑑𝑑𝑑𝑧𝑧(𝑑𝑑)
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑅𝑅𝑔𝑔𝑇𝑇𝐵𝐵�(𝑥𝑥𝑏𝑏𝑐𝑐2 + 𝑦𝑦𝑏𝑏𝑐𝑐2 ) �
𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)�̇�𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)2 −

�̇�𝑑𝐵𝐵𝑐𝑐(𝑑𝑑)
𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)

� .
𝑁𝑁

𝑐𝑐=1

 

The maximum rate of change in vehicle mass takes place 
at the beginning of blowing,when the flow rate from bottle 
is maximum and the entrance of air in the tank causes 
anoverpressure. Experimental results allow us to estimate 
this overpressure in about a 15 % ata depth of 100 m. Hence, 
since the mass flow rate from bottle is maximum,�̇�𝑑𝐵𝐵 =
−�̇�𝑑𝐹𝐹,𝑑𝑑𝑚𝑚𝑥𝑥 ,and taking into account the values in Table 2, we 
obtain an upper bound for the variationof mass of around6 ∙
103 kg/s. Hence, comparing this with the initial mass and 
the initial moments of inertia (see [14]), even if the 
derivatives of the state variables are one order of magnitude 
lower thanthese, the terms𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥 are two orders of 

magnitude lower than the terms𝑑𝑑�̇�𝑥and 𝑑𝑑𝑑𝑑.̇This sustain the 
idea of using a quasy-steady variable mass model. 

C. Complete model in compact form  

Summarizing, the state variables of the system can be 
expressed in vector form as 

𝐱𝐱(𝑑𝑑) = [[𝑑𝑑𝐹𝐹𝑐𝑐(𝑑𝑑),𝑑𝑑𝐵𝐵𝑐𝑐(𝑑𝑑),𝑝𝑝𝐵𝐵𝑐𝑐(𝑑𝑑)]1≤𝑐𝑐≤𝑁𝑁 ,𝜼𝜼(𝑑𝑑)𝑇𝑇 ,𝝂𝝂(𝑑𝑑)𝑇𝑇]𝑇𝑇 

and the control vector 

𝐮𝐮(𝑑𝑑) = [𝑠𝑠𝑐𝑐(𝑑𝑑), �̅�𝑠𝑐𝑐(𝑑𝑑)]1≤𝑐𝑐≤𝑁𝑁
𝑇𝑇  

represents the aperture of blowing and venting valves.  

Finally, the state law is composed of equations (8)-(10) 
for the blowing-venting system, the kinematic and dynamic 
equations of motion (see [6, 11]), where the time variable 
parameters as described in Subsection II.B have been taken 
into account. In compact form we write these equations as 

 𝐀𝐀�𝐱𝐱(𝑑𝑑)��̇�𝐱(𝑑𝑑) = 𝐟𝐟�𝑑𝑑,𝐱𝐱(𝑑𝑑),𝐮𝐮(𝑑𝑑)�, (14) 

where𝐀𝐀�𝐱𝐱(𝑑𝑑)�  is a matrix of size(3𝑁𝑁 + 12) × (3𝑁𝑁 + 12)  
and 𝐟𝐟�𝑑𝑑, 𝐱𝐱(𝑑𝑑),𝐮𝐮(𝑑𝑑)�  is a vector of size (3𝑁𝑁 + 12)   for 
every 𝑑𝑑 ≥ 0 .In Section IV wewill analyze in detail the 
structure of 𝐀𝐀 and 𝐟𝐟 . Nevertheless, at this point, it is 

convenient to comment on the explicit dependence of 𝐟𝐟 with 
respect to the time variable. Since we plan to analyze the 
potential use of blowing-venting as a control system for 
manoeuvrability, deflection of bow plane𝛿𝛿𝑏𝑏(𝑑𝑑), deflection 
of stern plane𝛿𝛿𝑠𝑠(𝑑𝑑),  deflection of rudder𝛿𝛿𝑟𝑟(𝑑𝑑), and propeller 
speed𝑛𝑛(𝑑𝑑) , that typically are the elements used for the 
manoeuvrability of the submarine, will be fixed to some 
convenient values during the whole time of manoeuvre. 
More precisely, we assume that𝛿𝛿𝑏𝑏 ,𝛿𝛿𝑠𝑠 ,𝛿𝛿𝑟𝑟 ,𝑛𝑛 ∈ 𝐿𝐿∞�0, 𝑑𝑑𝑖𝑖 ;ℋ�, 
where 

ℋ = �−
5𝜋𝜋
36

,
5𝜋𝜋
36
� × �−

5𝜋𝜋
36

,
5𝜋𝜋
36
� × �−

7𝜋𝜋
36

,
7𝜋𝜋
36
�× [0,2.5]. 

Therefore, the explicit dependence of 𝐟𝐟on time is linked 
to these four functions. 

III. FORMULATION  OF THE CONTROL PROBLEM 

Next, we plan to analyze the potential use of blowing-
venting operations as a control mechanismin a typical 
emergency rising manoeuvre where the submarine must 
reach surfacequickly while keeping its stability. Given an 
initial state 𝐱𝐱(0) = 𝐱𝐱0 and a desired final target 𝐱𝐱𝑑𝑑𝑖𝑖 , the goal 
is to calculate the vector of control 𝐮𝐮 = 𝐮𝐮(𝑑𝑑), which is able 
to draw our system from the initial state 𝐱𝐱0 to (or near to) 
the final one 𝐱𝐱𝑑𝑑𝑖𝑖  in a given time 𝑑𝑑𝑖𝑖, also minimizing a cost 
functional. In mathematical terms we have the Bolza-type 
problem 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑀𝑀𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑𝑐𝑐𝑧𝑧𝑒𝑒 𝑐𝑐𝑛𝑛 𝐮𝐮:

𝐽𝐽(𝐮𝐮) =  Φ�𝐱𝐱�𝑑𝑑𝑖𝑖�,𝐱𝐱𝑑𝑑𝑖𝑖�+  � 𝐹𝐹(𝑑𝑑, 𝐱𝐱(𝑑𝑑))𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

0
𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑒𝑒𝑤𝑤𝑑𝑑 𝑑𝑑𝑡𝑡

𝐀𝐀�𝐱𝐱(𝑑𝑑)�𝐱𝐱(𝑑𝑑)̇ = 𝐟𝐟(𝑑𝑑, 𝐱𝐱(𝑑𝑑),𝐮𝐮(𝑑𝑑))
𝐱𝐱(0) = 𝐱𝐱0, 𝐱𝐱(𝑑𝑑) ∈ Ω

0 ≤ 𝑠𝑠𝑐𝑐(𝑑𝑑), �̅�𝑠𝑐𝑐(𝑑𝑑) ≤ 1,   1 ≤ 𝑐𝑐 ≤ 𝑁𝑁

� (𝑃𝑃𝑑𝑑𝑖𝑖 ) 

where Ω stands for the set of constraints for the state 
variable. Typically 

 
Φ�𝐱𝐱(𝑑𝑑𝑖𝑖)� = � 𝛼𝛼𝑠𝑠 �𝑥𝑥𝑠𝑠 �𝑑𝑑𝑖𝑖� − 𝑥𝑥𝑠𝑠

𝑑𝑑𝑖𝑖 �
2

3𝑁𝑁+12

𝑠𝑠=1

 (15) 

with𝛼𝛼𝑠𝑠 ≥ 0 penalty parameters, and 

 
𝐹𝐹(𝑑𝑑, 𝐱𝐱(𝑑𝑑)) = � 𝛽𝛽𝑠𝑠�𝑥𝑥𝑠𝑠 (𝑑𝑑)− �̅�𝑥𝑠𝑠 (𝑑𝑑)�

2
3𝑁𝑁+12

𝑠𝑠=1

 (16) 

with 𝛽𝛽𝑠𝑠 ≥ 0  also weight parameters and 𝐱𝐱�(𝑑𝑑) = ��̅�𝑥𝑠𝑠 (𝑑𝑑)�  a 
desired trajectory. 

The set Ω, which models the constraints on the state 
variable, has the following structure.For the variables 
entering in the blowing-venting model, since the outside 
pressure at a certain depth is the sum of the atmospheric 
pressure and the weight of the water column above the 
submarine, even if the pressure in the ballast tank is slightly 
lower than the outside pressure and the vehicle is close to 
the surface, we can safely assume that the pressure in the 
tank will always be greater than the atmospheric pressure, 
that is𝑝𝑝𝐵𝐵𝑐𝑐 ≥ 𝑝𝑝𝐵𝐵− = 𝑝𝑝𝑚𝑚𝑑𝑑𝑑𝑑 . Although an upper bound can not 
be so easily obtained, it is easy to see that the pressure in the 
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tank will always take finite values, which justifies the 
assumption𝑝𝑝𝐵𝐵𝑐𝑐 ≤ 𝑝𝑝𝐵𝐵+ < ∞. It is also immediate to see that 
the upper bound for the mass of air in the tank and bottle is 
the initial mass of air in the bottle. By hypothesis, there will 
always be a residual amount of air in the tanks,𝑑𝑑𝐵𝐵0 . 
Therefore𝑑𝑑𝐵𝐵𝑐𝑐 ≥ 𝑑𝑑𝐵𝐵

− = 𝑑𝑑𝐵𝐵0 > 0. As we stated before, the 
pressure in the tank will not drop below𝑝𝑝𝑚𝑚𝑑𝑑𝑑𝑑 . Since the air 
will flow due to the pressure difference between bottle and 
tank, the pressure in the bottle will have the same lower 
bound. This way, using the perfect gas equationa lower 
bound for the air mass in the bottle can be obtained,𝑑𝑑𝐹𝐹𝑐𝑐 ≥
𝑑𝑑𝐹𝐹
− > 0 . Summarizing, we are able to assume the 

constraints 

 

�
0 < 𝑑𝑑𝐹𝐹

− ≤ 𝑑𝑑𝐹𝐹𝑐𝑐 ≤ 𝑑𝑑𝐹𝐹
+ < +∞

0 < 𝑑𝑑𝐵𝐵
− ≤ 𝑑𝑑𝐵𝐵𝑐𝑐 ≤ 𝑑𝑑𝐵𝐵

+ < +∞
0 < 𝑝𝑝𝐵𝐵− ≤ 𝑝𝑝𝐵𝐵𝑐𝑐 ≤ 𝑝𝑝𝐵𝐵+ < +∞.

� (17) 

As for Euler angles, since we are dealing with a manned 
submarine,typically 

−
𝜋𝜋
4

< 𝜙𝜙 <
𝜋𝜋
4 , −

𝜋𝜋
4 < 𝜃𝜃 <

𝜋𝜋
4 , 0 < 𝜓𝜓 < 2𝜋𝜋. 

Due to the bounded nature of the ocean, the position 
components (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are also limited to some bounded 
rectangle. Finally, the physics of the problem also imposes a 
constraint on the rest of components (ie. linear (𝑢𝑢,𝑣𝑣,𝑤𝑤) and 
angular (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) velocities). 

To sum up, we can assume that Ω is a bounded rectangle. 

IV. MATHEMATICAL ANALYSIS 

We start our analysis by proving that for any initial state 
𝐱𝐱0 ∈ Ω  and any admissible control 𝐮𝐮(𝑑𝑑)  there exists a 
unique solution of (14) starting from 𝐱𝐱0, and also satisfying 
𝐱𝐱(𝑑𝑑) ∈ Ω , defined in some interval 0 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑖𝑖  where 
𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0)  only depends on the initial condition. However, 
since the state law is expressed in implicit form, we can not 
apply standard results. To overcome this difficulty we will 
show that the matrix-valued map 𝐀𝐀  is smooth and takes 
nonsingular values, that is, the state law can be rewritten in 
explicit form as 

 �̇�𝐱(𝑑𝑑) = 𝐀𝐀�𝐱𝐱(𝑑𝑑)�
−1
𝐟𝐟�𝑑𝑑,𝐱𝐱(𝑑𝑑),𝐮𝐮(𝑑𝑑)�. (18) 

A. A is Nonsigular-Valued 

It is clear that for any 𝐱𝐱 ∈ Ω and any admissible control 
𝐮𝐮(𝑑𝑑), the matrix 𝐀𝐀(𝐱𝐱) has the form 

 
𝐀𝐀(𝐱𝐱) = �

𝐁𝐁𝐁𝐁(𝐱𝐱) 𝟎𝟎3𝑁𝑁×6 𝟎𝟎3𝑁𝑁×6
𝟎𝟎6×3𝑁𝑁 𝑑𝑑6 𝟎𝟎6×6
𝟎𝟎6×3𝑁𝑁 𝟎𝟎6×6 𝐌𝐌(𝐱𝐱)

� (19) 

where𝐁𝐁𝐁𝐁(𝐱𝐱)  is the submatrix associated to the blowing-
venting equations and 𝐌𝐌(𝐱𝐱)  is the so called (variable) 
inertia matrix. Furthermore, 𝐁𝐁𝐁𝐁(𝐱𝐱) is a 3𝑁𝑁 × 3𝑁𝑁 matrix 
structured in 3 × 3 diagonal blocks 

 
𝐁𝐁𝐁𝐁(𝐱𝐱) = �

𝐁𝐁𝐁𝐁1(𝐱𝐱) ⋯ 𝟎𝟎3×3
⋮ ⋱ ⋮

𝟎𝟎3×3 ⋯ 𝐁𝐁𝐁𝐁𝑁𝑁(𝐱𝐱)
� (20) 

where, for 1 ≤ 𝑐𝑐 ≤ 𝑁𝑁, 

 

𝐁𝐁𝐁𝐁𝑐𝑐(𝐱𝐱) = �

1 0 0
1 1 0
0 −1

𝑑𝑑𝐵𝐵𝑐𝑐

𝑝𝑝𝐵𝐵𝑐𝑐

� (21) 

with det𝐁𝐁𝐁𝐁𝑐𝑐(𝐱𝐱) = 𝑑𝑑𝐵𝐵𝑐𝑐
𝑝𝑝𝐵𝐵𝑐𝑐

≥ 𝑑𝑑𝐵𝐵
−

𝑝𝑝𝐵𝐵
+ > 0  by (17). Thus 𝐁𝐁𝐁𝐁𝑐𝑐(𝐱𝐱) is 

nonsingular with 

 

𝐁𝐁𝐁𝐁𝑐𝑐(𝐱𝐱)−1 = �

1 0 0
−1 1 0
−𝑝𝑝𝐵𝐵𝑐𝑐
𝑑𝑑𝐵𝐵𝑐𝑐

𝑝𝑝𝐵𝐵𝑐𝑐
𝑑𝑑𝐵𝐵𝑐𝑐

𝑝𝑝𝐵𝐵𝑐𝑐
𝑑𝑑𝐵𝐵𝑐𝑐

� (22) 

and, therefore, the full matrix 𝐁𝐁𝐁𝐁(𝐱𝐱) is also nonsingular for 
every admissible state 𝐱𝐱 ∈ Ω with 

 
𝐁𝐁𝐁𝐁(𝐱𝐱)−1 = �

𝐁𝐁𝐁𝐁1(𝐱𝐱)−𝟏𝟏 ⋯ 𝟎𝟎3×3
⋮ ⋱ ⋮

𝟎𝟎3×3 ⋯ 𝐁𝐁𝐁𝐁𝑁𝑁(𝐱𝐱)−𝟏𝟏
�. (23) 

It just remains to prove that the inertia matrix 𝐌𝐌  is 
invertible. From the dynamic equations of motion and (12)-
(13) we have that 𝐌𝐌(𝐱𝐱)has the form 

 𝐌𝐌(𝐱𝐱) = 𝐌𝐌𝑣𝑣(𝐱𝐱) +𝐌𝐌𝑤𝑤 (24) 

where 

 𝐌𝐌𝑣𝑣(𝐱𝐱) = �𝑑𝑑(𝐱𝐱)𝑑𝑑3 −𝐒𝐒(𝐱𝐱)
𝐒𝐒(𝐱𝐱) 𝐈𝐈(𝐱𝐱) � (25) 

is the variable part of the matrix, with 

𝑺𝑺(𝐱𝐱) = �
0 −𝑑𝑑(𝐱𝐱)𝑧𝑧𝐺𝐺(𝐱𝐱) 𝑑𝑑(𝐱𝐱)𝑦𝑦𝐺𝐺(𝐱𝐱)

𝑑𝑑(𝐱𝐱)𝑧𝑧𝐺𝐺(𝐱𝐱) 0 −𝑑𝑑(𝐱𝐱)𝑥𝑥𝐺𝐺(𝐱𝐱)
−𝑑𝑑(𝐱𝐱)𝑦𝑦𝐺𝐺(𝐱𝐱) 𝑑𝑑(𝐱𝐱)𝑥𝑥𝐺𝐺(𝐱𝐱) 0

� 

and 

𝑰𝑰(𝒙𝒙) = �
𝑑𝑑𝑥𝑥(𝐱𝐱) −𝑑𝑑𝑥𝑥𝑦𝑦 (𝐱𝐱) −𝑑𝑑𝑥𝑥𝑧𝑧 (𝐱𝐱)
−𝑑𝑑𝑥𝑥𝑦𝑦 (𝐱𝐱) 𝑑𝑑𝑦𝑦(𝐱𝐱) −𝑑𝑑𝑦𝑦𝑧𝑧 (𝐱𝐱)
−𝑑𝑑𝑥𝑥𝑧𝑧 (𝐱𝐱) −𝑑𝑑𝑦𝑦𝑧𝑧 (𝐱𝐱) 𝑑𝑑𝑧𝑧(𝐱𝐱)

� 

the inertia tensor, and 𝐌𝐌𝑤𝑤 is the so-called added inertia 
matrix (see [11]). 

It is usual in the literature on dynamics of submerged 
vehicles(see [8, Property 2.4], for instance) to assume that 
𝐌𝐌𝑤𝑤  is a symmetric and positive definite matrix (and 
therefore invertible). However, experimental values of the 
non-dimensional hydrodynamic coefficients reported by 
Navantia showed that this is not a realistic assumption in all 
cases. In particular the inertia matrix used in our numerical 
experiments, based in the experimental data provided by 
Navantia, is not symmetric, but it is invertible. 

Let 𝐌𝐌0 be the rigid-body inertia matrix of the submarine 
with all the ballast tanks completely filled with water, i.e., 

𝐌𝐌0 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑑𝑑0𝑑𝑑3 𝑑𝑑0 �

0 𝑧𝑧𝐺𝐺0 −𝑦𝑦𝐺𝐺0
−𝑧𝑧𝐺𝐺0 0 𝑥𝑥𝐺𝐺0
𝑦𝑦𝐺𝐺0 −𝑥𝑥𝐺𝐺0 0

�

𝑑𝑑0 �
0 −𝑧𝑧𝐺𝐺0 𝑦𝑦𝐺𝐺0
𝑧𝑧𝐺𝐺0 0 −𝑥𝑥𝐺𝐺0
−𝑦𝑦𝐺𝐺0 𝑥𝑥𝐺𝐺0 0

� 𝑰𝑰0
⎦
⎥
⎥
⎥
⎥
⎤

. 

This matrix is symmetric and usually is assumed to be 
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positive definite ([8, Property 2.2]). Therefore whenever 
matrices𝐌𝐌𝑤𝑤and𝐌𝐌0are assumed to be symmetric and positive 
definite, the inertia matrix𝐌𝐌0 +𝐌𝐌𝑤𝑤 is invertible, since it is 
also symmetric and positive definite. Otherwise the 
invertibility of𝐌𝐌0 +𝐌𝐌𝑤𝑤must be checked for any particular 
model. 

Finally, nonsingularity of𝐌𝐌(𝐱𝐱)  follows from the next 
classical Lemma. 

LEMMA III.1Let𝐃𝐃 ∈ ℳ𝑑𝑑×𝑑𝑑be an invertible matrix and 
let ∆∈ ℳ𝑑𝑑×𝑑𝑑  be a square matrix such that 

‖𝐃𝐃−1∆‖ = sup{|𝐃𝐃−1∆𝐲𝐲|: |𝐲𝐲| = 1} < 1 
where|∙| denotes the Euclidian norm in ℝ𝑑𝑑 . Then 𝐃𝐃+ ∆ is 
invertible with 

(𝐃𝐃+ ∆)−1 = �(−1)𝑛𝑛 (𝐃𝐃−1∆)𝑛𝑛
∞

𝑛𝑛=0

𝐃𝐃−1 

Computing the operator norm of a matrix is not in 
general an easy task, but next well-known Lemma provides 
a very useful estimate. 

LEMMA III.2 Let 𝐃𝐃 = �𝑑𝑑𝑐𝑐𝑠𝑠 � ∈ ℳ𝑑𝑑×𝑑𝑑  be a square 
matrix. Then 

 
‖𝐃𝐃‖ ≤ ��𝑑𝑑𝑐𝑐𝑠𝑠2 .

𝑐𝑐 ,𝑠𝑠

 (26) 

The right-hand side in (26) is called the Frobenius norm 
of  𝐃𝐃, ‖𝑫𝑫‖𝐹𝐹. 

Let 𝐱𝐱 ∈ Ω be an admissible state. Since 𝐌𝐌(𝐱𝐱) =
(𝐌𝐌0 +𝐌𝐌𝑤𝑤) + (𝐌𝐌𝑣𝑣(𝐱𝐱)−𝐌𝐌0) with 𝐌𝐌0 +𝐌𝐌𝑤𝑤  invertible, by 
Lemma 1,it suffices to  show that 

 ‖(𝐌𝐌0 +𝐌𝐌𝑤𝑤)−1 + (𝐌𝐌𝑣𝑣(𝐱𝐱)−𝐌𝐌0)‖ < 1 (27) 

to have the nonsingularity of 𝐌𝐌(𝐱𝐱). Furthermore, Lemma 1 
also ensures that 

 
𝐌𝐌(𝐱𝐱)−1 = �(−1)𝑛𝑛�(𝐌𝐌0 + 𝐌𝐌𝑤𝑤)−1 + (𝐌𝐌𝑣𝑣(𝐱𝐱) − 𝐌𝐌0)�𝑛𝑛

∞

𝑛𝑛=0
∙  (𝐌𝐌0 + 𝐌𝐌𝑤𝑤)−1.

 (28) 

Summarizing, 𝐌𝐌(𝐱𝐱)  is invertible, for any state𝐱𝐱 ∈ Ω , 
whenever 𝐌𝐌0 +𝐌𝐌𝑤𝑤  is invertible and the variation of mass 
due to the blowing-venting manoeuvres is small enough. 
More precisely, if 

 
∆𝑑𝑑+ <

𝜆𝜆𝑑𝑑𝑐𝑐𝑛𝑛

�3 + 4𝑁𝑁∑ |𝐜𝐜𝑐𝑐|2 + 9
2
∑ |𝐜𝐜𝑐𝑐|4𝑁𝑁
𝑐𝑐=1

𝑁𝑁
𝑐𝑐=1

 (29) 

holds, where ∆𝑑𝑑+ = ∑ ∆𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑚𝑚𝑥𝑥 = 𝜌𝜌𝑁𝑁
𝑐𝑐=1 ∑ (𝑉𝑉𝐵𝐵𝐵𝐵𝑐𝑐 − 𝑉𝑉𝐵𝐵0)𝑁𝑁

𝑐𝑐=1  is 
the maximum variation of mass,  𝜆𝜆𝑑𝑑𝑐𝑐𝑛𝑛 > 0 is the smallest 
singular value of the inertia matrix 𝐌𝐌0 +𝐌𝐌𝑤𝑤 and 𝐜𝐜𝑐𝑐  is the 
geometrical center of the i-th ballast tank, then 
𝐀𝐀isnonsingular-valued. 

THEOREM III.4.If the matrix 𝐌𝐌0 + 𝐌𝐌𝑤𝑤  is invertible and 
the inequality (28) is satisfied, then the matrix-valued map 
𝐀𝐀:Ω →  ℳ(12+3𝑁𝑁)×(12+3𝑁𝑁) takes nonsingular values, that is, 
𝐀𝐀(𝐱𝐱) is invertible for any 𝐱𝐱 ∈ Ω with 

𝐀𝐀(𝐱𝐱)−1 = �
𝐁𝐁𝐁𝐁(𝐱𝐱)−1 𝟎𝟎3𝑁𝑁×6 𝟎𝟎3𝑁𝑁×6
𝟎𝟎6×3𝑁𝑁 𝑑𝑑6 𝟎𝟎6×6
𝟎𝟎6×3𝑁𝑁 𝟎𝟎6×6 𝐌𝐌(𝐱𝐱)−1

�. 

Moreover, the map 𝐱𝐱 → 𝐀𝐀(𝐱𝐱)−1 is continuously 
differentiable. 

Proof.To show that 𝐀𝐀(𝐱𝐱) is invertible for any 𝐱𝐱 ∈ Ω, it 
suffices to show that (27) is satisfied uniformly with respect 
to the state variable. We have 
‖(𝐌𝐌0 + 𝐌𝐌𝑤𝑤 )−1 + (𝐌𝐌𝑣𝑣(𝐱𝐱) −𝐌𝐌0)‖ ≤ ‖(𝐌𝐌0 + 𝐌𝐌𝑤𝑤)−1‖‖𝐌𝐌𝑣𝑣(𝐱𝐱) −𝐌𝐌0‖

=
1
𝜆𝜆
‖𝐌𝐌𝑣𝑣(𝐱𝐱) −𝐌𝐌0‖

 

by properties of the matrix norm (see [16, Appendix A], for 
instance).Let us now obtain estimates for the supremum of 
the Frobenius norm of the variable matrix.Firstly, from (11) 

 
��Δ𝑑𝑑𝑐𝑐(𝐱𝐱)
𝑁𝑁

𝑐𝑐=1

� ≤�Δ𝑑𝑑𝑐𝑐,𝑑𝑑𝑚𝑚𝑥𝑥 = 𝜌𝜌�(𝑉𝑉𝐵𝐵𝐵𝐵𝑐𝑐 − 𝑉𝑉𝐵𝐵0).
𝑁𝑁

𝑐𝑐=1

𝑁𝑁

𝑐𝑐=1

 (30) 

Let us now estimate the variation of the coordinates of 
the center of gravity 

 ��𝑥𝑥𝑏𝑏𝑐𝑐Δ𝑑𝑑𝑐𝑐(𝐱𝐱)
𝑁𝑁

𝑐𝑐=1

� ≤ (∆𝑑𝑑+)�|𝑥𝑥𝑏𝑏𝑐𝑐 |,
𝑁𝑁

𝑐𝑐=1

 (31) 

 ��𝑦𝑦𝑏𝑏𝑐𝑐Δ𝑑𝑑𝑐𝑐(𝐱𝐱)
𝑁𝑁

𝑐𝑐=1

� ≤ (∆𝑑𝑑+)�|𝑦𝑦𝑏𝑏𝑐𝑐 |,
𝑁𝑁

𝑐𝑐=1

 (32) 

 ��𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐 (𝐱𝐱)Δ𝑑𝑑𝑐𝑐(𝐱𝐱)
𝑁𝑁

𝑐𝑐=1

� ≤ (∆𝑑𝑑+)�|𝑧𝑧𝑏𝑏𝑐𝑐 |
𝑁𝑁

𝑐𝑐=1

 (33) 

with(𝑥𝑥𝑏𝑏𝑐𝑐 ,𝑦𝑦𝑏𝑏𝑐𝑐 , 𝑧𝑧𝑏𝑏𝑐𝑐 ) the coordinates of the geometrical center 
of the i-th tank. Finally, from (13) and (30) 

 
|𝑑𝑑𝑥𝑥(𝐱𝐱)− 𝑑𝑑𝑥𝑥0| = ��(𝑦𝑦𝑏𝑏𝑐𝑐2 + 𝑧𝑧𝑑𝑑𝑚𝑚𝑐𝑐2 )∆𝑑𝑑𝑐𝑐(𝐱𝐱)

𝑁𝑁

𝑐𝑐=1

�

≤ (∆𝑑𝑑+)�(𝑦𝑦𝑏𝑏𝑐𝑐2 + 𝑧𝑧𝑏𝑏𝑐𝑐2 )
𝑁𝑁

𝑐𝑐=1

 
(34) 

Similar estimates can be obtained for the rest of 
moments and products of inertia. 

Hence, from Lemma 2 and estimates (30)-(34), it 
follows that for any 𝐱𝐱 ∈ Ω, 

‖𝐌𝐌𝑣𝑣(𝐱𝐱)−𝐌𝐌0‖

≤ (∆𝑑𝑑+)�3 + 4𝑁𝑁��𝑥𝑥𝑏𝑏𝑐𝑐2 + 𝑦𝑦𝑏𝑏𝑐𝑐2 + 𝑧𝑧𝑏𝑏𝑐𝑐2
𝑁𝑁

𝑐𝑐=1

� +
9
2��𝑥𝑥𝑏𝑏𝑐𝑐2 + 𝑦𝑦𝑏𝑏𝑐𝑐2 + 𝑧𝑧𝑏𝑏𝑐𝑐2

𝑁𝑁

𝑐𝑐=1

�

2

 

where we have also used the convexity inequality 

(∑ 𝑚𝑚𝑐𝑐𝑁𝑁
𝑐𝑐=1 )2 ≤ 𝑁𝑁(∑ 𝑚𝑚𝑐𝑐2𝑁𝑁

𝑐𝑐=1 )and also that𝑚𝑚𝑏𝑏 ≤ (𝑚𝑚2 + 𝑏𝑏2) 2⁄ . 
Combining this inequality with (29), we have the desired 

inequality (27). Finally, from (23) and (28) it follows that 
𝐱𝐱 → 𝐀𝐀(𝐱𝐱)−1  iscontinuosly differentiable and the proof is 
complete.□ 

Remark 1.For the particular data of the prototype 
considered in our numerical experiments, 𝐌𝐌0 +𝐌𝐌𝑤𝑤  is 
invertible.Moreover, 𝜆𝜆𝑑𝑑𝑐𝑐𝑛𝑛 = 1.54 ∙ 1012and hence 
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(∆𝑑𝑑+)�3 + 4𝑁𝑁�∑ 𝑥𝑥𝑏𝑏𝑐𝑐
2 + 𝑦𝑦𝑏𝑏𝑐𝑐

2 + 𝑧𝑧𝑏𝑏𝑐𝑐
2𝑁𝑁

𝑐𝑐=1 �+ 9

2
�∑ 𝑥𝑥𝑏𝑏𝑐𝑐

2 + 𝑦𝑦𝑏𝑏𝑐𝑐
2 + 𝑧𝑧𝑏𝑏𝑐𝑐

2𝑁𝑁
𝑐𝑐=1 �2

𝜆𝜆𝑑𝑑𝑐𝑐𝑛𝑛
= 1.73 ∙ 10−4. 

B. The state law is well-posed 

Set 𝐾𝐾 = [0,1]2𝑁𝑁. An admissible control of the problem 
will be an essentially bounded map taking values in 𝐾𝐾, that 
is, 𝐿𝐿∞(0, +∞;𝐾𝐾)is the space of admissible controls. Given 
𝐮𝐮 ∈ 𝐿𝐿∞(0, +∞;𝐾𝐾), our aim in this section is to show that 
the system (18) has a solution for any initial state 𝐱𝐱0. We 
begin by recalling the classical theory on this subject. For 
the details we refer the reader to[16, Appendix C]. 

By a (Carathéodory) solution we mean an absolutely 
continuous function𝑑𝑑 → 𝐱𝐱(𝑑𝑑) ∈ Ω, defined on some interval 
𝑑𝑑 = �0, 𝑑𝑑𝑖𝑖�, which satisfies the integral equation 

𝐱𝐱(𝑑𝑑) = 𝐱𝐱0 +� 𝐠𝐠(𝑠𝑠, 𝐱𝐱(𝑠𝑠))𝑑𝑑𝑠𝑠
𝑑𝑑

0
, for every 𝑑𝑑 ∈ �0, 𝑑𝑑𝑖𝑖� 

where, for simplicity, we write 𝐠𝐠: 𝑑𝑑 ×  Ω → ℝ3𝑁𝑁+12 , 
𝐠𝐠(𝑑𝑑, 𝐱𝐱) = 𝐀𝐀�𝐱𝐱(𝑑𝑑)�

−1
𝐟𝐟�𝑑𝑑, 𝐱𝐱(𝑑𝑑),𝐮𝐮(𝑑𝑑)�. 

We recall that the solution𝐱𝐱(𝑑𝑑) defined on �0, 𝑑𝑑𝑖𝑖�is said 
to be maximal if 𝑑𝑑𝑖𝑖 is the largest time for which 𝐱𝐱(𝑑𝑑)  is 
defined. As it is well-known, if 𝐠𝐠 satisfies conditions (H1)-
(H4) below, then we can ensurethe existence and uniqueness 
of a maximal solution of (18) for any initial state: 

(H1) For each 𝐱𝐱 ∈ Ω , the function 𝐠𝐠(∙,𝐱𝐱): 𝑑𝑑 → ℝ𝑁𝑁  is 
measurable. 

(H2) For each 𝑑𝑑 ∈ 𝑑𝑑 , the function 𝐠𝐠(𝑑𝑑,∙): 𝑑𝑑 → ℝ𝑁𝑁  is 
continuous. 

(H3) 𝐠𝐠is locally Lipschitz with respect to 𝐱𝐱 that is, for 
each 𝐱𝐱0 ∈ Ω  there exist a real number 𝜀𝜀 > 0 and a 
locally integrable function 𝛼𝛼: 𝑑𝑑 → ℝ+ suchthat the 
ball 𝐵𝐵𝜀𝜀(𝐱𝐱0)of radius 𝜀𝜀centered at 𝐱𝐱0  is contained in 
Ωand 

 |𝐠𝐠(𝑑𝑑,𝐱𝐱) − 𝐠𝐠(𝑑𝑑, 𝐲𝐲)| ≤ 𝛼𝛼(𝑑𝑑)|𝐱𝐱 − 𝐲𝐲|
for every 𝑑𝑑 ∈ 𝑑𝑑 and𝐱𝐱,𝐲𝐲 ∈ 𝐵𝐵𝜀𝜀(𝐱𝐱0) (35) 

(H4) 𝐠𝐠is locally integrable with respect to 𝑑𝑑, that is, for 
each 𝐱𝐱0 ∈ Ω there exist a locally integrablefunction 
𝛽𝛽: 𝑑𝑑 → ℝ+such that 

 |𝐠𝐠(𝑑𝑑,𝐱𝐱0)| ≤ 𝛽𝛽(𝑑𝑑)a. e. 𝑑𝑑 ∈ 𝑑𝑑. (36) 

Our main result in this section follows: 

THEOREM IV.5.For each 𝐱𝐱0 ∈ Ω and each 𝐮𝐮 ∈
𝐿𝐿∞(0, +∞;𝐾𝐾)we can ensure the existence an uniqueness of 
a solution of (18) which is defined on a maximal time 
interval �0, 𝑑𝑑𝑖𝑖� ,where 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0) only depends on the 
initialstate𝐱𝐱0and is uniform with respect to the control𝐮𝐮 ∈
𝐿𝐿∞(0, +∞;𝐾𝐾). 

Proof.Tobegin with, we notice that thanks to Theorem 1 
we may restrict the analysis that follows to the right-hand 
side of the state law (14).Let us prove that conditions (H1)-
(H4) above hold. Since thetime variable 𝑑𝑑 only appears in 

the control functions (𝑠𝑠𝑐𝑐(𝑑𝑑), �̅�𝑠𝑐𝑐(𝑑𝑑)) , 1 ≤ 𝑐𝑐 ≤ 𝑁𝑁 , and, by 
hypothesis, these functions belong to 𝐿𝐿∞(ℝ∞ ; [0,1])  it is 
clear that for each 𝐱𝐱 ∈ Ω  the function 𝑑𝑑 → 𝐟𝐟(𝑑𝑑,𝐱𝐱) is 
measurable. 

As regards the continuity of the function 𝐟𝐟(𝑑𝑑,∙), only the 
equations modelling the air flow from pressure bottles need 
of adetailed analysis to check that the pass from supersonic 
flow to subsonicone is continuous. A direct computation 
shows that this is so whenever𝑑𝑑𝐹𝐹𝑐𝑐 ≥ 𝑑𝑑𝐹𝐹

− > 0 and 𝑝𝑝𝐵𝐵𝑐𝑐 ≥
𝑝𝑝𝐵𝐵− > 0. 

As for condition (H4), from the form in which controls 
appear in the state lawit follows that for each 𝐱𝐱0 ∈ Ω the 
components 𝑖𝑖𝑐𝑐(𝑑𝑑, 𝐱𝐱0) , 1 ≤ 𝑐𝑐 ≤ 3𝑁𝑁 + 12 , of 𝐟𝐟(𝑑𝑑,𝐱𝐱0) are 
uniformly bounded with respect to 𝑑𝑑, that is, (36) holds for a 
constant function𝛽𝛽(𝑑𝑑) = 𝛽𝛽 and what is more important, this 
constant is uniform with respectto 𝐮𝐮 ∈ 𝐿𝐿∞(ℝ+;𝐾𝐾). 

Next we analyze the local Lipschitz condition of 𝐟𝐟(𝑑𝑑, 𝐱𝐱). 
Consider firstly the equations𝑖𝑖𝑐𝑐 , 𝑐𝑐 = 1 + 3𝑠𝑠, 0 ≤ 𝑠𝑠 ≤ 𝑁𝑁 − 1, 
which modelair flow from bottles. Taking into account the 
set of constraints (17),a direct computation shows that 
𝑖𝑖𝑐𝑐(𝑑𝑑,∙) ∈ 𝑊𝑊1,∞(Ω) and therefore they are Lipschitz. As 
before it isimportant to notice that the estimates on the 
partial derivatives of 𝑖𝑖𝑐𝑐(𝑑𝑑,∙)are uniform with respect to 𝑑𝑑 , 
that is, thereexists𝐿𝐿 > 0 such that 

 
�
𝜕𝜕𝑖𝑖𝑐𝑐
𝜕𝜕𝑥𝑥𝑠𝑠

(𝑑𝑑,𝐱𝐱)� ≤ 𝐿𝐿 

 
(37) 

for every 𝐱𝐱 ∈ Ω and uniformly w.r.t. 𝑑𝑑 ≥ 0. 

Similarly, functions 𝑖𝑖𝑐𝑐 , 𝑐𝑐 = 2 + 3𝑠𝑠 , 0 ≤ 𝑠𝑠 ≤ 𝑁𝑁 − 1 , 
which appear in the equationsmodelling air flow through 
venting valve are continuous and satisfy anestimate as in 
(37). Thus, they are Lipschitz. Asbefore, the Lipschitz 
constant is uniform with respect to the controlvariable. 

Consider nowfunctions 𝑖𝑖3+3𝑠𝑠 , 0 ≤ 𝑠𝑠 ≤ 𝑁𝑁 − 1 ,which 
appear in the equationsfor evolution of pressure in ballast 
tanks. In this case, when pressure in aballast tank equals 
outside pressure, the derivatives of velocities in 
thecorresponding flood port blows-up because of the 
presence of the squareroot. To avoid this singularity we 
have approximated the square root asshown in Subsection 
II.A.4. As a conclusion,once again we obtain that these 
maps are Lipschitz. 

The components𝑖𝑖𝑐𝑐 , 3𝑁𝑁 + 1 ≤ 𝑐𝑐 ≤ 3𝑁𝑁 + 6, only include 
the transformationmatrix between body and world reference 
frames. Taking into account theconstraints on Euler angles, 
it is clear that 𝑖𝑖𝑐𝑐 ∈ 𝐶𝐶∞(Ω) , 3𝑁𝑁 + 1 ≤ 𝑐𝑐 ≤ 3𝑁𝑁 + 6 , and 
thereforethey are Lipschitz. Notice that the time variable 
does not appear in thesefunctions. 

As for the remaining 𝑖𝑖𝑐𝑐 , 3𝑁𝑁 + 7 ≤ 𝑐𝑐 ≤ 3𝑁𝑁 + 12, these 
components include: (a)polynomial terms and terms in the 
form of absolute values; all of them areLipschitz, (b) terms 

like 𝑥𝑥𝑠𝑠�𝑥𝑥𝑠𝑠2 + 𝑥𝑥𝑡𝑡2 and �𝑥𝑥𝑠𝑠 ��𝑥𝑥𝑠𝑠2 + 𝑥𝑥𝑡𝑡2  for some 18 ≤ 𝑠𝑠 ≤ 24 . 

Since this functions are continuous and the discontinuities 
of its derivatives are of a finite jump,they are also Lipschiz. 
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(c) Since our model is mass variable, it isnecessary to look 
carefully at the terms including mass𝑑𝑑, weight𝑊𝑊,centerof 
gravity (𝑥𝑥𝐺𝐺 , 𝑦𝑦𝐺𝐺 ,𝑧𝑧𝐺𝐺)  and moments and product of 
inertia𝑑𝑑𝑥𝑥 , 𝑑𝑑𝑦𝑦 , 𝑑𝑑𝑧𝑧 , 𝑑𝑑𝑥𝑥𝑦𝑦 … because now they depend on some 
components ofthe state variable. Taking into account the 
constraints (17)it is clear that these components are 
alsoLipschitz. Finally, the product of Lipschitz functions is 
also Lipschitz. Asbefore, these components 𝑖𝑖𝑐𝑐do not include 
control variable 𝐮𝐮(𝑑𝑑) and therefore the corresponding 
Lipschitz constants areindependentof 𝐮𝐮(𝑑𝑑). 

From this analysis it is deduced that for each 𝐱𝐱0 ∈ Ω and 
𝐮𝐮 ∈ 𝐿𝐿∞(ℝ+;𝐾𝐾)  there exists a maximaltime 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0,𝐮𝐮) 
and a unique maximalsolution defined in �0, 𝑑𝑑𝑖𝑖(𝐱𝐱0,𝐮𝐮)� . 
Looking at the proof of this existence result(see [16, Th. 36, 
pp. 347-351]) we realize that 𝑑𝑑𝑖𝑖depends on 𝐮𝐮 through the 
functions𝛼𝛼(𝑑𝑑) = 𝛼𝛼(𝐮𝐮(𝑑𝑑)) and 𝛽𝛽(𝑑𝑑) = 𝛽𝛽(𝐮𝐮(𝑑𝑑))which appear 
in (35) and (36). However, as shownbefore these functions 
𝛼𝛼 and 𝛽𝛽can be chosen uniformly w.r.t.𝐮𝐮 ∈ 𝐿𝐿∞(ℝ+;𝐾𝐾). As a 
conclusion, 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0)  only depends on the initial 
condition.This completes the proof.□ 

C. Existence of Solution for the Optimal Control Problem 

Fix 𝐱𝐱0 ∈ Ωand let 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0)be the maximal time, as 
given by Theorem IV.5, for which system (18) is well-posed. 
The goal of this section is to prove thefollowing existence 
result: 

THEOREM IV.6.Let 𝐱𝐱0 ∈ Ω and let 0 < 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖(𝐱𝐱0) <
+∞ be as above. Then, there exists, at least, one solution to 
�𝑃𝑃𝑑𝑑𝑖𝑖�. 

Proof.The proof follows as a consequence of the 
classical Filippovexistence theorem for Bolza-type optimal 
control problems (see[3, Th. 9.3.i, p. 314]). Indeed, let us 
see that the sufficientconditions for the existence of a 
solution hold. Due to the constrains onthe state variable, the 
set 𝐴𝐴 = �0, 𝑑𝑑𝑖𝑖�× Ω   iscompact. Similarly, since the set 
𝐾𝐾 = [0,1]2𝑁𝑁 for controlconstraints is compact, the set 𝐴𝐴 ×
𝐾𝐾 is also compact. In addition,the functionΦ:𝐴𝐴 × 𝐴𝐴 → ℝ 
defined by (15) is continuous. Continuity also holds for the 
functions 𝐹𝐹and𝐠𝐠both defined on 𝐴𝐴 × 𝐾𝐾. 

Notice also that, by Theorem 2, the set of 
admissiblesolutions for �𝑃𝑃𝑑𝑑𝑖𝑖� is not empty. Finally, we must 
checkthat for each(𝑑𝑑, 𝐱𝐱) ∈ 𝐴𝐴 the orientator field 

𝑄𝑄(𝑑𝑑, 𝐱𝐱) = {(𝑧𝑧0;𝐳𝐳) ∈ ℝ1+3𝑁𝑁+12 : 𝑧𝑧0 ≥ 𝐹𝐹(𝑑𝑑,𝐱𝐱),
𝐳𝐳 = 𝐠𝐠(𝑑𝑑, 𝐱𝐱,𝐮𝐮), with𝐮𝐮 ∈ 𝐾𝐾 } 

isconvex. This convexity easily follows from the facts that 
thecontrol variable 𝐮𝐮 appears in a linear form in the state 
law and the set 𝐾𝐾 is convex.□ 

V. NUMERICAL ANALYSIS 

A. Algorithm of minimization 

There are several optimization methods which can be 
applied to solve �𝑃𝑃𝑑𝑑𝑖𝑖�. Due to the complexity of the state 
law and the large number ofvariables involved in the 

problem, it is quite reasonable to use a gradientdescent 
method with projection. Briefly, the scheme of this method 
consistsof the following main steps: 

1. Initialization of the control input 𝐮𝐮0. 

2. For 𝑡𝑡 ≥ 0, iteration until convergence (e.g. |𝐽𝐽(𝐮𝐮𝑡𝑡+1)−
𝐽𝐽(𝐮𝐮𝑡𝑡)| ≤ 𝜀𝜀|𝐽𝐽(𝐮𝐮0)|, with 𝜀𝜀 > 0 a suitable tolerance) as 
follows: 

2.1. We consider the vector 

𝐯𝐯𝑡𝑡+1 = 𝐮𝐮𝑡𝑡 − 𝜆𝜆∇𝐽𝐽(𝐮𝐮𝑡𝑡) 

where𝜆𝜆 > 0  is a fixed step parameter, and ∇𝐽𝐽  is 
the gradient of the cost function. 

2.2. Since𝐯𝐯𝑡𝑡+1may not be admissible, we compute its 
orthogonal projection onto the admissibility set K, 
the unit rectangle in ℝ8, that is, 𝐮𝐮𝑡𝑡+1 =  𝑃𝑃𝐾𝐾(𝐯𝐯𝑡𝑡+1) 
where 

𝑢𝑢𝑠𝑠𝑡𝑡+1 = min�max�0,𝑣𝑣𝑠𝑠𝑡𝑡+1�, 1�. 

The crucial step is the computation of the gradient 
∇𝐽𝐽(𝐮𝐮𝑡𝑡). This can be obtained by using the adjoint method 
which isdescribed next: 

1. Given the control 𝐮𝐮𝑡𝑡 , 𝑡𝑡 ≥ 0, solve the state equation 

�𝐀𝐀�𝐱𝐱(𝑑𝑑)�𝐱𝐱(𝑑𝑑)̇ = 𝐟𝐟(𝑑𝑑, 𝐱𝐱(𝑑𝑑),𝐮𝐮𝑡𝑡(𝑑𝑑))
𝐱𝐱(0) = 𝐱𝐱𝑡𝑡(0)

� 

to obtain the state 𝐱𝐱𝑡𝑡+1(𝑑𝑑). 

2. With the pair (𝐮𝐮𝑡𝑡(𝑑𝑑),𝐱𝐱𝑡𝑡+1(𝑑𝑑)) , solve the linear 
backward equation for the adjoint state 𝐩𝐩(𝑑𝑑) 

⎩
⎪
⎨

⎪
⎧𝐀𝐀�𝐱𝐱𝑡𝑡+1(𝑑𝑑)�

𝑇𝑇
�̇�𝐩(𝑑𝑑) = −∇𝑥𝑥𝐹𝐹�𝑑𝑑, 𝐱𝐱𝑡𝑡+1(𝑑𝑑),𝐮𝐮𝑡𝑡(𝑑𝑑)�

−�∇𝑥𝑥𝐟𝐟�𝑑𝑑,𝐱𝐱𝑡𝑡+1(𝑑𝑑),𝐮𝐮𝑡𝑡(𝑑𝑑)��
𝑇𝑇𝐩𝐩(𝑑𝑑)

𝐀𝐀�𝐱𝐱𝑡𝑡+1�𝑑𝑑𝑖𝑖��
𝑇𝑇
𝐩𝐩�𝑑𝑑𝑖𝑖� = ∇𝑥𝑥Φ�𝐱𝐱𝑡𝑡+1�𝑑𝑑𝑖𝑖�,𝐱𝐱𝑑𝑑𝑖𝑖 �

� 

where∇𝑥𝑥  is the gradient with respect to the state variable 𝐱𝐱. 
Thus, we obtain 𝐩𝐩𝑡𝑡+1(𝑑𝑑). 

3. Finally, 

∇𝐽𝐽(𝐮𝐮𝑡𝑡)
= ∇𝐮𝐮𝐹𝐹�𝑑𝑑, 𝐱𝐱𝑡𝑡+1(𝑑𝑑),𝐮𝐮𝑡𝑡(𝑑𝑑)�
+ �∇𝐮𝐮𝐟𝐟�𝑑𝑑, 𝐱𝐱𝑡𝑡+1(𝑑𝑑),𝐮𝐮𝑡𝑡(𝑑𝑑)��

𝑇𝑇
𝐩𝐩𝑡𝑡+1(𝑑𝑑) 

where now ∇𝐮𝐮 is the gradient with respect to 𝐮𝐮. 

Werefer the reader to [5] for more details on this method. 

B. A Numerical Experiment 

In orderto test the proposed models, this section shows 
the results of the numerical simulation of an emergency 
rising manoeuvre. These results are used to analyze both the 
mathematical properties and the possible real-world 
applications of the proposed scheme. At each iteration of the 
gradient algorithm, the numerical resolutions of the state 
and adjoint state equations have been carried out by using 
the ODE45 Matlab function, which is a one-step solver 
based on an explicit Runge-Kutta method. 
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The typical protocol for an emergency rising is to use 
the control planes to pitch the nose of the submarine up, 
increase the speed, and blow the ballast tanks to reduce the 
weight of the submarine and drive it to the surface with 
buoyancy. As analyzed in [1, 18], small to medium size 
submarines exhibit a roll instability during these kind of 
manoeuvres. Roll angles of up to 25degrees have been 
reported. It is also known that if the submarine emerges with 
a high roll angle, it may experiment large roll oscillations on 
the surface. Of course, this is an undesirable situation, 
particularly if the operators are attending to the original 
problem that required the emergency rise. 

For these reasons, it might be interesting to check if this 
situation can be prevented by using blowing/venting control 
instead of a manual blowing. To this end, an emergency 
rising manoeuvre has been simulated for three different 
scenarios: 

Scenario 1: A standard manoeuvre. Initial depth is 100 
m, initial speed is 2 m/s. Starting from 𝑑𝑑 = 0, the protocol 
described above is used to drive the vehicle to the surface: 
propeller revolutions are increased to the maximum value, 
2.5 rps, to increase the forward speed, and stern and bow 
planes are set to -20 and 20 degrees respectively; a value 
selected to rapidly pitch the vehicle up while ensuring that 
pitch angle is kept within acceptable values. At the same 
time, ballast tanks 2-5 are simultaneously blown with half 
the maximum intensity (this corresponds to 𝑠𝑠𝑐𝑐 = 0.5in our 
model). Vent valves remain closed (�̅�𝑠𝑐𝑐 = 0.5) throughout all 
the simulation. Simulation ends when submarine reaches a 
depth of 10 m (an arbitrarily low value for which we can 
assume that the vehicle has reached the surface). To sum up: 

𝛿𝛿𝑟𝑟(𝑑𝑑) = 0
𝛿𝛿𝑠𝑠(𝑑𝑑) = −20
𝛿𝛿𝑏𝑏(𝑑𝑑) = 20
𝑛𝑛(𝑑𝑑) = 2.5

𝑠𝑠𝑐𝑐 = 0.5,   𝑐𝑐 = 1⋯ 4
�̅�𝑠𝑐𝑐 = 0,   𝑐𝑐 = 1⋯4

∀𝑑𝑑 

We note that, although we refer to this scenario as 
standard manoeuvre, the constant value for the deflection of 
control planes is of course a simplification of what would be 
done in real operation. 

Scenario 2: Same manoeuvre, with the control algorithm 
acting from 𝑑𝑑 = 0to 𝑑𝑑 = 30s using exclusively the blowing 
valves. The controls from Scenario1 are used as 
initialization and the optimization process looks to achieve 
three main objectives: 

• Submarine must rise in a similar time as it does 
in the standard manoeuvre. 

• Rising pitch angle must be around 20 degrees 
and never above 25 degrees. 

• Roll angle must be as close as possible to zero 
throughout all the simulation. 

Scenario 3: Same as Scenario 2 but incorporating the 
use of venting valves in conjunction with blowing valves. 

For both Scenario 2 and Scenario 3, the following set of 
parameters is used: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐱𝐱

(0) = ([𝑑𝑑𝐹𝐹0𝑐𝑐 ,𝑑𝑑𝐵𝐵0𝑐𝑐 ,𝑝𝑝𝐵𝐵0𝑐𝑐]1≤𝑐𝑐≤4, 0,0,100,0,0,0,2,0,0,0,0,0)
𝑑𝑑𝑖𝑖 = 30 𝑠𝑠
𝜙𝜙�(𝑑𝑑) = �̅�𝑥16 (𝑑𝑑) = 0  ∀𝑑𝑑 ∈ [0,30]
𝑧𝑧𝑑𝑑𝑖𝑖 = 𝑥𝑥15

𝑑𝑑𝑖𝑖 = 75, 𝜃𝜃𝑑𝑑𝑖𝑖 = 𝑥𝑥17
𝑑𝑑𝑖𝑖 = 10.

𝛼𝛼15 = 𝛼𝛼17 = 1, 𝛼𝛼𝑠𝑠 = 0, 𝑠𝑠 ≠ 15,17.
𝛽𝛽16 = 5, 𝛽𝛽𝑠𝑠 = 0, 𝑠𝑠 ≠ 16.
𝜆𝜆 = 0.001 𝜀𝜀 = 10−5

� 

wherethe initial mass of air in the bottles is 𝑑𝑑𝐹𝐹0𝑐𝑐 =
237.8376kg, the initial mass of air in the tanks is 𝑑𝑑𝐵𝐵0𝑐𝑐 =
0.0126kg and the initial pressure in the tanks is 𝑝𝑝𝐵𝐵0𝑐𝑐 =
1.0846 ∙ 106 Pa.After 𝑑𝑑 = 30 s, simulation continues with 
fixed controls (values equal to those used in Scenario 1) 
until the submarine reaches a depth of 10 m. 

 
Fig.1 Depth (top), pitch and roll angle (bottom) for Scenario 1 (dotted line), 

Scenario 2 (dashed line) and Scenario 3 (solid line). 

Results are shown in figures 3-6. Figure 3 shows vehicle 
depth, pitch angle and roll angle for all three scenarios. The 
rest of state variables have not been included since they are 
not directly relevant for this particular manoeuvre. 
Comparison between dotted (standard manoeuvre) and 
dashed lines (Scenario 2) shows that the three objectives 
have been achieved for Scenario2: the rising time is only a 
few seconds greater than in the standard manoeuvre, the 
final pitch angle is close to 20 degrees and the roll angle has 
been significantly reduced with respect to the standard 
manoeuvre. Indeed, Scenario1 exhibits roll angles in the 
range of 3-4 degrees during most of the simulation time 
while in Scenario2, after an initial peak of 2 degrees, the roll 
angle is kept within extremely low values. Results of 
Scenario 3 (solid line) show that performance can be further 
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improved by incorporating the aperture of venting valves 
into the control variable. From the engineering point of view, 
the convenience of the use of venting during an emergency 
rise can be arguable and is indeed not a usual practice. 
However, it is used in Scenario 3 to demonstrate the 
algorithm capabilities. Table 3 summarizes the value of cost 
function for standard and optimal controls. 

TABLEIIIII. VALUE OF COST FUNCTION FOR STANDARD AND OPTIMAL 
CONTROLS 

Scenario 1 2 3 
Cost 1211.447 129.0241 125.1811 

 

 
Fig. 4 Blowing valve aperture for standard (dotted lines) and optimal 
controls (dashed lines for Scenario 2 and solid lines for Scenario 3). 

The control variables are shown in figures 4 (blowing 
valves) and 5 (venting valves). As we can see, the rolling 

moment is compensated by blowing more ballast from the 
starboard tanks. It may surprise that tanks 2 and 4 are being 
vented while there is no blowing air yet and that, for some 
time intervals, the same tank is simultaneously blown and 
vented, but it is worth noting that opening the venting valve 
changes the pressure against the air is blown. This seems to 
allow for smoother transitions. Indeed, although taking 
simultaneously two opposite actions may seem inefficient, 
the use of venting valves seems to improve the results 
obtained by using only the blowing valves. Anyway, the 
results obtained in this test represent an optimum without 
any engineering considerations; it gives a reference of the 
best achievable result. This way a better understanding of 
these manoeuvres and its associated difficulties may be 
gained. At a practical point of view and having in mind a 
real implementation in a submarine, engineering 
considerations may later be easily taken into account by 
including them in the cost function. 

 
Fig. 5 Venting valve aperture for standard (dotted lines) and optimal 
controls (dashed lines for Scenario 2 and solid lines for Scenario 3). 
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The value of the cost function for Scenario 3 at each 
iteration is plotted in Figure 6. As we see, the algorithm 
shows exponential convergence. As is usual in this type of 
algorithm, results depend on the initialization. Different 
initializations were tested obtaining different optimal 
controls. This seems to show the existence of several local 
and/or global minima. 

 
Fig. 6 Cost function at each iteration. 

VI. CONCLUSIONS 

A quasi-steady mathematical model has been proposed 
for the coupling of blowing andventing operations with the 
usual Feldman equations of motion for a conventional 
mannedsubmarine. This model extends the one proposed in 
[1,18] where only blowing was considered. A simplified 
version of our model was announced by the authors in [8]. 
However, up to the best knowledge of the authors, a 
mathematical model for coupled blowing and venting 
operations acting as a control mechanism as presented in 
this paper has not been studied so far. A detailed 
mathematical analysis of the model includes the proof of 
existenceof a solution for the resulting system of 24 
nonlinear ordinary differential equations. As anillustration 
of the potential use of the model, we have considered the 
problem of roll controlin an emergency rising manoeuvre. 
To this end, a suitable optimal control problem has 
beenformulated, the existence of a solution has been 
obtained and its numerical resolution hasbeen carried out by 
using a descent algorithm. Numerical simulation results 
have shownthat, indeed, blowing and venting processes in 
manned submarines are promising devices 
formanoeuvrability that may be used in a number of real-
world applications in naval engineeringsuch as launch and 
recovery of AUVs. 
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