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Abstract: A highly interactive, integrated and multi-level simulator has been developed specifically to support both
the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly
visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of
concepts which are often difficult to grasp by the students. The rational behind the development is explained and the
main features of the simulator are described. A brief account of the ways in which the simulator has been used to
support undergraduate lectures and tutorials is given. The current state of the research in assessing and evaluating the
value of the simulations at undergraduate levels is presented.

Introduction

The teaching of computer architecture which includes key subject areas such as production of
executable code, instruction set architectures (ISAs), performance enhancing features and principles
of operating systems form the core set of subjects for most computing and computer science
undergraduate degree programmes. These topics have been identified both in the ACM/IEEE
computing curricula (USA) (Computing Curricula, 2001) and the QAA’s subject benchmark in
computing (UK) (Computing 2007, 2007) reports. In most cases, the teaching of these topics involve
combination of methods such as traditional lectures, individual programming assignments,
modification of educational operating systems and simulations. Exactly which combination tends to
depend on the educational institution delivering them and can often be influenced by the teaching
expertise and the resources available within the computing departments.

At Edge Hill University the delivery of the three-year full-time modular computing degree
programme is the responsibility of the Business School. In the first year, the majority of students
study a module on the fundamentals of computer architecture. Some of these students go on to
studying more advanced topics in the second year. The delivery of the programme includes
traditional theory via lectures supported by tutorial and practical sessions as well as individual and
group coursework assignments. The students studying for computing degrees are recruited from
wide educational backgrounds and competencies which may not include any previous computing
experience or qualifications.

The tutorial and practical sessions on computer architecture have been supported by investigating
aspects of different operating systems, mainly Windows and Linux. However, there remained a
requirement for studying those architectural features which are difficult or impossible to access and
demonstrate on real systems. With this in mind, it was decided that a software simulator would be
developed with features designed to support the computing modules in computer architecture and
operating systems.
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On the Motivation

The motivation for developing a new educational simulator from scratch is prompted by the need for
the following main requirements

An integrated system simulator. In computer architecture, different technologies are interrelated and
support each other across clearly defined interfaces. It is these interdependencies and the interplay
that the integrated simulator aims to represent. The students prefer to see the “big picture” and to
understand how things “hang” together.

Rich pedagogical features. As an educational tool, it is important that a simulator enhances and enriches
learning experiences of students and at the same time facilitates deep understanding of the key
technological concepts and issues. It should actively encourage experimentation, exploration and
investigative problem solving with students working either individually or in groups.

Control and monitoring facilities. In a dynamic simulation environment it is essential to be able to
suspend, stop and re-start the simulations on the occurrence of some pre-determined event or state. It
may also be necessary to manually make changes to selected system components (e.g. memory,
registers, instructions, etc.)

Support at different educational levels. The simulator should support students at different stages of their
educational development from basic to advanced levels of competencies and should incorporate
simulations of a wide range of technological aspects of computer architectures.

Integrated visual displays. Animated, real-time, colour coded, visual displays can provide immediate
feedback and impact which can help reveal trends, show state transitions and facilitate comparisons.

Support for problem-based learning. Problem-based learning (PBL) is a method of encouraging
independent student-lead learning. The simulator can support and facilitate PBL with ease.

Little or no programming knowledge required. One of the main features of the simulator is to facilitate the
learning of computer architecture and operating systems technology without requiring prior
programming experience.

Support for advanced features. The simulator is designed to support advanced architectural features
such as multiple processors, instruction level pipelining, compiler optimizations and virtualization.

Easy and intuitive user interface. The users of the simulator should not be faced with a steep learning
curve. As the same simulator is expected to be used across different modules and over different years
of study, the students soon become familiar with its usage.

Prior Work

Over the years, many simulators of computer architectures have been developed which have been
used as valuable educational resources (Yurcik et al, 2001 and Yehezkel et al, 2002) at undergraduate
computing courses. These range from simple, abstract, high-level simulators to advanced simulators
of commercial CPUs.

Table 1 lists some examples of software simulators developed for educational purposes. The
simulators are categorised as operating system (OS) based and CPU based simulations. Most of the
simulators developed appear to be CPU based. The OS simulators tend to be rather fragmented along



European Journal of Science and Mathematics Education Vol. 1, No. 1, 2013 | 36

the lines of distinct but isolated functionality. It is interesting to note that none of the listed simulators
incorporate both CPU and OS simulations in one software package.

Table 1. A survey of some of the educational simulators, past and present.

Name Simulator|Comments
0s |cPU

SchedulerSim (Chan, 2004) Yes No CPU scheduling concept

Sim. + assembler (Than, No Yes IO processing + interrupt

2007) handling

MKt (Nishita, 2004) No Yes Inst. set + data paths + control
unit

SOsim (Maia, Pacheco, 2003 Yes No Process + memory management

)

Sim. (Robbins, Robbins, Yes No Process scheduling, HTML-

1999) based, scripted

Sim. (Ivanov and Mallozi, No Yes Assembler + inst. set

2004)

MarieSim (Null, Lobur, No Yes Assembler + inst. set + data

2004)) paths

PDP-8 simulator No Yes PDP-8 inst. set + assembler

(Shelburne, 2003)

Simulta (Styer, 1994) No Yes Inst. set + microcode +
input/output

CPU Sim (Skrien, 2001) No Yes Inst. set + microcode + assembler|

MARS (Vollmar, Sanderson, No Yes MIPS assembly language

2006) simulator

Starving philosophers Yes No Limited OS: Syncronization +

(Robbins, 2001) monitors

IAddress translation Yes No Limited OS: Virtual memory

(Robbins, 2005)

IMPS (Morsiani, Davoli, No Yes Inst. set + input/output + MIPS

1999) CPU sim.

JASP toolkit (Burrell, 2004) No Yes Inst. set + assembler + high-level
lang.

Psim] sim. (Garrido, Yes No Various isolated OS component

Schlesinger, 2008) simulations

There have been surveys of many other software simulators and visualization tools designed to
support computer architecture education at universities and colleges (Yurcik et al, 2001 and Wolffe, et
al, 2002), each using slightly different approach to satisfy local educational requirements. Some
simulators have been developed to accompany text books on operating systems and computer
architectures (Garrido and Schlesinger, 2008, Stallings, 2009, Burrell, 2004 and Null and Lobur, 2006).
These simulators often concentrate on some specific technological aspects of the systems and do not
offer a unified approach.

Another related approach taken by various universities and colleges is to develop or use existing
teaching operating systems which the students are asked to modify and/or extend (Atkin and Sirer,
2002 and Hovemeyer et al, 2004). This approach often requires good programming ability by the
students and, although highly realistic, is not always suitable as a teaching and learning resource.
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Simulator Design Details

The design and development of the system simulator are based on clearly defined design principles.
The integrated simulator is composed of three main components: a “teaching” compiler, a CPU
simulator and an operating system (OS) simulator supporting each other. For example, the compiler
will generate code which can be run by the CPU simulator either in isolation or under the control of
the OS simulator for multiprogramming support. Each of the three components is described below.

The compiler. A basic but complete high-level teaching language is developed to support the CPU and
OS simulations. This language incorporates the standard language control structures, constructs and
system calls which are used to demonstrate a modern computer system’s key architectural features. A
compiler is developed for this language which generates both assembly-level language and its
equivalent binary byte-code as output. The compiler is also able to disassemble the binary byte-code
back to its assembler code equivalent thus demonstrating reverse-engineering concept desirable in
certain circumstances. Image 1 shows a snapshot of the main compiler user interface.

The compiler includes refinements such as code optimizations, support for profiling, display of
compiler stages and the binary code generated as well as some statistical data. Additionally, the
compiler includes an integrated tabbed source editor capable of handling multiple source code at the
same time. The “teaching” compiler can support a module on compiler design.

The compiler optimizations can be used to demonstrate performance gains due to reductions in code
size and enhancing CPU pipelining (see below) when jump instructions are eliminated. They are also
used to demonstrate that an experienced human assembly coder is still a better producer of more
efficient code than most optimizing compilers.

The compiler and its associated language naturally support the CPU and the OS simulations thus
reflecting the importance of the language processors.
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Image 1. The compiler main screen.

The CPU simulator. The CPU is loosely based on RISC architecture with a prominent register file
composed of from 8 to 64 fast registers, a minimal set of variable-length instructions and a limited
number of addressing modes. Except two instructions, viz. load and store, the instruction set is based
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on register to register addressing. Optionally the CPU instructions can be entered manually by
selecting the valid instructions and any operand(s) from list of instructions and operands. In selecting
operands the associated addressing modes can also be specified at the same time. The selected
assembler instruction is then added to the CPU instruction memory. The stored instructions can then
be individually selected and manually executed. The simulator provides runtime debugging facilities
for the selected instructions, registers and memory locations. A stack is provided which demonstrates
support for interrupts, system calls, subroutine parameters and return addresses.

A further refinement to CPU simulator is the inclusion of cache and pipeline simulations both of
which provide highly configurable and visual operations. These advanced simulators can be used to
demonstrate technology specific details and their impact on system performance. The cache
placement and replacement policies can be selected; the hit/miss ratios can be plotted and compared.
The pipeline stages are colour coded and animated. Different methods of eliminating pipeline
hazards can be clearly demonstrated to improve performance. A history of pipeline activity is
maintained which can be used to investigate pipelining. Image 2 shows the main user interface for the
CPU simulator.

In order to be able to study systems with multiple processors, the simulator can optionally start
multiple processors simulations. Each processor is identical and loading code in one is duplicated in
others. The processors can be used to demonstrate load balancing and virtualization with multiple
operating systems.

The CPU simulator defines a list of vectored interrupts. Each interrupt vector is triggered by a pre-
defined event, e.g. console input or timer event. The inbuilt high-level language has constructs for the
definition of interrupt routines as interrupt handlers the addresses of which are placed in the
interrupt vectors at program load time.

The OS simulator. The OS simulator is designed to support two main aspects of a computer system’s
resource management: process management and memory management. Image 3 shows the main user
interface for this simulator. Once a compiled code is loaded in CPU memory, its image is also
available to the OS simulator. It is then possible to create multiple instances of the program images as
separate processes. The OS simulator displays the running processes, the ready processes and the
waiting processes. Each process is assigned a separate process control block (PCB) which contains
information on process state. This information is displayed in a separate window. The memory
display demonstrates the dynamic nature of page allocations according to the currently selected
placement policy. The OS maintains a separate page table for each process which can also be
observed. The simulator demonstrates how data memory is relocated and the page tables are
modified as the pages are moved in and out of the main memory illustrating virtual memory activity.

The process scheduler includes various selectable scheduling policies which includes priority-based,
pre-emptive and round-robin scheduling with variable time quanta. The OS is able to carry out
context-switching which can be visually enhanced by slowing down or suspending the progress at
some key stage to enable the students to study the states of CPU registers, stack, cache, pipeline and
the PCB contents.

The simulator incorporates an input output console device which is used to display text and accept
input data.
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Image 2. The CPU simulator main screen.

The OS simulator supports dynamic library simulation which is supported by the appropriate
language constructs in the teaching language. The benefits of sharing code between multiple
processes are visually demonstrated. There is also a facility to link static libraries demonstrating the
differences between the two types of libraries and their benefits and drawbacks.

The simulator allows manual allocation and de-allocation of resources to processes. This facility is
used to create and demonstrate deadlocks associated with resources and enables experimentation
with deadlock prevention, detection and resolution.
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Image 3. The OS simulator main screen.
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Threads are fundamental aspects of modern multiprogramming/multi-tasking systems. This feature is
supported by the OS simulator via special language constructs which identify parts of programs for
execution as threads. The threads are scheduled like processes but they share their parent’s memory
address spaces. The concepts of orphan and zombie processes are also explored.

In multiprogramming systems it is sometimes necessary and desirable to prevent multiple processes
accessing shared resources at the same time. So the concepts of synchronization and critical regions
are facilitated by special teaching language constructs. There is also a Java style subroutine
synchronization facility.

The CPU utilization can vary depending on the types of applications. The concept of CPU-bound and
IO-bound applications is explored by the OS simulator by artificially varying the ratio of running to
waiting processes. The simulator monitors the CPU and memory utilizations and displays the
information in a graphical format at runtime.

The Virtual Machine (VM)

A separate stand-alone virtual machine has been developed which is able to interpret and execute the
compiled byte-code. The VM is a native executable code and is currently implemented on Windows
and Linux operating systems. This is a console based facility and runs under the control of the host
operating system and supports multi-threading. This code demonstrates the concept of VM by
enabling the execution of the code on different platforms.

Some Notable Features

The system simulator boasts some notable features, not available elsewhere. Below is a summary of
some of these features.

Compiler. The compiler incorporates object-oriented (OO) features and can be used to demonstrate
inheritance, encapsulation and polymorphism. The students can also observe the way the code is
generated for object-oriented programs.

A language construct is available to demonstrate the code generated for exception handling. The
programmer can specify areas of code that can be protected as in Java programming language.

The Inter Process Communications (IPC) is an important aspect of modern computer architecture.
The simulator’s language includes constructs which generate system calls that support IPC.

The compiler’s source editor and the view displaying the corresponding code generated are context
sensitive. So, as the cursor is moved or placed on a particular line of source, the corresponding code
generated is highlighted and vice versa. This makes it easy for the student to observe the code
generated corresponding to each line of source statement.

CPU simulator. The compiler favours registers as locations for program variables. However it can be
forced to spill these over to the memory by generating the appropriate load/store instructions if the
number of registers is set low.

The register file includes a “watch” facility where selected registers can be specified with a value and
a condition upon which the simulation will be suspended.

In addition, the registers in the register file can be tagged with visible markers (e.g. images) which
indicate the status of registers with respect to the stages of the pipeline for hazard conditions.
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OS simulator. The OS simulator implements inbuilt system calls. The system calls use an instruction
which causes software interrupt and passes a parameter to the OS indicating the type of the call. As
system calls are frequent occurrences, the students need to understand the general mechanisms
involved.

One of the interesting features of the OS simulator is its ability to create and run processes
automatically for extended periods. The input/output events, resource allocations/de-allocation,
deadlocking, process memory pages, page swapping, process scheduling, context switching are all
randomly simulated.

Current Research

The simulator project has recently secured funding from Higher Education Academy (HEA) to carry
out evaluation on the effectiveness of the simulations as a teaching and learning resource. The
funding, which is for a period of six months, also aims to support the dissemination this of the results;
a dedicated web site will be created for this purpose.

Both qualitative and quantitative data will be gathered and the research will concentrate on devising
tutorial and lab exercises which will be attempted with and without the support of the simulations.
The exercise results will be assessed and a comparison between the two sets of results will be made.
There will also be a survey of student opinions on the use of the simulations in underpinning theory.

Further Work

The simulator’s current state is maturing and is fairly stable. The extension of the simulator to cover
areas of system architecture which are increasingly being included in our modules will undoubtedly
further enhance the education of our students. Areas of development for which funding will be
sought are listed below:

= Distributed OS simulation

=  Superscalar CPU architectures

*= Extended input/output devices

Conclusions

The creation of yet another educational simulator has been fully justified on the grounds that there is
a need for a unified approach to facilitate the teaching and learning of computer architectures
including in undergraduate computing courses. The research of the existing simulators revealed a
fragmented presence of many simulators and none, as far as this author is aware, offers the means of
facilitating deep understanding of the concepts of unification of the technology.

It is this desire of a unified approach that prompted the author to initiate a new simulator project in
the first place. It is hoped that the present system simulator as described in this paper will go some
way to closing this gap.
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