EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 3, 2012, 357-364 ISSN 1307-5543 – www.ejpam.com

On Characterizations of New Separation Axioms and Topological Properties

S. Pious Missier¹, M. J. Jeyanthi², Adem Kılıçman^{3,*}

¹ Department of Mathematics, V. O. Chidambaram College, Thoothukudi-628 008 (T.N.), India

² Aditanar College of Arts and Science, Tiruchendur(T.N.), India

³ Institute of Mathematical Research (INSPEM) and Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Abstract. In this paper, we introduce new separations axioms $\Lambda_r - R_0$, $\Lambda_r - R_1$ and $\Lambda_r - D_k$, and study their properties.

2010 Mathematics Subject Classifications: 54D10, 54D15 Key Words and Phrases: $\Lambda_r - R_0$, $\Lambda_r - R_1$ and $\Lambda_r - D_k$, k = 0, 1, 2

1. Introduction

Caldas and Jafari [1] introduced the notions of $\Lambda_{\delta} - R_0$ and $\Lambda_{\delta} - R_1$ topological spaces. In this paper, we define Λ_r -open sets, that is, if (X, τ) is a topological space and $A \subset X$. Then Λ_r -kernel of A is defined by

$$\Lambda_r - ker(A) = \cap (G/G \in \Lambda_r O(X, \tau) \text{ and } A \subset G).$$

Then we introduce some Λ_r -separation axioms, we call these axioms as $\Lambda_r - R_0$, $\Lambda_r - R_1$ and study the properties of these axioms. We also define Λ_r -difference sets and utilize them to define the $\Lambda_r - D_k$, k = 0, 1, 2 axioms.

Throughout the paper (X, τ) (or simply X) will always denote a topological space. Let (X, τ) be a topological space and $S \subset X$. Then S is called regularly-open if S = Int(clS). The complement $S^c(=X \setminus S)$ of a regularly-open set S is called the regularly-closed set. The family of all regularly-open sets(resp. regularly-closed sets) will be denoted by $RO(X, \tau)$ (resp. $RC(X, \tau)$). A subset S of a topological space (X, τ) is called Λ_r -set if $S = \Lambda_r(S)$ where

$$\Lambda_r(S) = \cap \{G/G \in RO(X, \tau) \text{ and } S \subseteq G\}.$$

http://www.ejpam.com

© 2012 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: spmissier@yahoo.com (S. Missier), jeyanthimanickaraj@gmail.com (M. Jeyanthi), akilicman@putra.upm.edu.my (A. Kılıçman)

The collection of all Λ_r -sets is denoted by $\Lambda_r(X, \tau)$.

Throughout this paper, we let *A* be a subset of a space (X, τ) . Then *A* is called a Λ_r -closed set if $A = T \cap C$ where *T* is a Λ_r -set and *C* is a closed set. The complement of a Λ_r -closed set is called Λ_r -open. The collection of all Λ_r -open sets is denoted by $\Lambda_r O(X, \tau)$. The collection of all Λ_r -closed sets is denoted by $\Lambda_r C(X, \tau)$. A point $x \in X$ is called a Λ_r -cluster point of *A* if for every Λ_r -open set *U* containing $x, A \cap U \neq \emptyset$. The set of all Λ_r -cluster points of *A* is called the Λ_r -closure of *A* and is denoted by $\Lambda_r - cl(A)$.

2. $\Lambda_r - R_0$ Spaces

Definition 1. The topological space (X, τ) is said to be $\Lambda_r - R_0$ if for each Λ_r -open set G, $x \in G \Rightarrow \Lambda_r - cl(\{x\}) \subseteq G$.

Theorem 1. For a topological space (X, τ) , the following statements are equivalent:

(1) (X, τ) is $\Lambda_r - R_0$,

- (2) For any Λ_r -closed set F and a point $x \notin F$, $\exists U \in \Lambda_r O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$,
- (3) For any Λ_r -closed set F and a point $x \notin F$, $\Lambda_r cl(\{x\}) \cap F = \emptyset$.

Proof. (1) \Rightarrow (2) Let *F* be a Λ_r -closed set and $x \notin F$. Then F^c is Λ_r -open and $x \in F^c$. Since *X* is $\Lambda_r - R_0$, $\Lambda_r - cl(\{x\}) \subseteq F^c$ and hence $F \subseteq X - (\Lambda_r - cl(\{x\}))$. Thus $X - (\Lambda_r - cl(\{x\}))$ is a Λ_r -open set containing *F* and $x \notin X - (\Lambda_r - cl(\{x\}))$.

(2) \Rightarrow (3) Let *F* be a Λ_r -closed set and $x \notin F$. Then $\exists U \in \Lambda_r O(X, \tau)$ such that $x \notin U$ and $F \subseteq U$.

Claim: $U \cap \Lambda_r - cl(\{x\}) = \emptyset$. For, if $U \cap \Lambda_r - cl(\{x\}) \neq \emptyset$, then \exists a point y in X such that $y \in U$ and $y \in \Lambda_r - cl(\{x\})$. That implies y is a Λ_r -cluster point of $\{x\}$. That implies for every Λ_r -open set G containing y, $G \cap \{x\} \neq \emptyset$. That is, $x \in G$. Here U is a Λ_r -open set containing y. Hence $x \in U$, which is a contradiction. Therefore $U \cap \Lambda_r - cl(\{x\}) = \emptyset$ and hence $F \cap \Lambda_r - cl(\{x\}) = \emptyset$.

(3) \Rightarrow (1) Let *G* be a Λ_r -open set and $x \in G$. Then G^c is Λ_r -closed and $x \notin G^c$. By (3), $\Lambda_r - cl(\{x\}) \cap G^c = \emptyset$ and hence $\Lambda_r - cl(\{x\}) \subseteq G$. Therefore (X, τ) is $\Lambda_r - R_0$.

Theorem 2. A space (X, τ) is $\Lambda_r - R_0$ iff for each pair x, y of distinct points in X, $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\}) = \emptyset$ or $\{x, y\} \subseteq \Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$.

Proof. Let (X, τ) be a $\Lambda_r - R_0$ space. Let $x, y \in X$ such that $x \neq y$. Then we have

Case(i): Suppose $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\}) \neq \emptyset$. If $\{x, y\}$ is not a subset of $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$ and $x \notin \Lambda_r - cl(\{y\})$, then $x \in X - (\Lambda_r - cl(\{y\}))$ and

 $X - (\Lambda_r - cl(\{y\}))$ is Λ_r -open. Since (X, τ) is $\Lambda_r - R_0$, $\Lambda_r - cl(\{x\}) \subseteq X - (\Lambda_r - cl(\{y\}))$. Therefore $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\}) = \emptyset$. This is a contradiction. Hence $\{x, y\} \subseteq \Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$.

Case(ii): Suppose $\{x, y\}$ is not a subset of $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$ and let $x \notin \Lambda_r - cl(\{y\})$. Then $x \in X - (\Lambda_r - cl(\{y\}))$ and $X - (\Lambda_r - cl(\{y\}))$ is Λ_r -open. Since (X, τ) is $\Lambda_r - R_0$, $\Lambda_r - cl(\{x\}) \subseteq X - (\Lambda_r - cl(\{y\}))$ and hence $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\}) = \emptyset$.

Conversely, let *U* be a Λ_r -open set and $x \in U$. Suppose $\Lambda_r - cl(\{x\})$ is not a subset of *U*. Then \exists a point $y \in \Lambda_r - cl(\{x\})$ such that $y \notin U$. That implies $y \in X - U$ and X - U is Λ_r -closed. Since $\Lambda_r - cl(\{y\})$ is the smallest Λ_r -closed set containing $y, \Lambda_r - cl(\{y\}) \subseteq X - U$ and hence $\Lambda_r - cl(\{y\}) \cap U = \emptyset$. Since $x \in U$, $x \notin \Lambda_r - cl(\{y\})$ and hence $\{x, y\}$ is not a subset of $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$. Also $y \in \Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\})$. That implies $\Lambda_r - cl(\{x\}) \cap \Lambda_r - cl(\{y\}) \neq \emptyset$. So by this contradiction, $\Lambda_r - cl(\{x\}) \subseteq U$ and hence (X, τ) is $\Lambda_r - R_0$.

Theorem 3. For any points x and y in a topological space (X, τ) , the following are equivalent:

(1)
$$\Lambda_r - ker(\{x\}) \neq \Lambda_r - ker(\{y\}),$$

(2) $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\}).$

Proof. (1) \Rightarrow (2) Suppose $\Lambda_r - ker(\{x\}) \neq \Lambda_r - ker(\{y\})$. Then \exists a point z in X such that $z \in \Lambda_r - ker(\{x\})$ and $z \notin \Lambda_r - ker(\{y\}) \Rightarrow \Lambda_r - cl(\{z\}) \cap \{x\} \neq \emptyset$ and $\Lambda_r - cl(\{z\}) \cap \{y\} = \emptyset \Rightarrow x \in \Lambda_r - cl(\{z\})$ and $y \notin \Lambda_r - cl(\{z\}) \Rightarrow \Lambda_r - cl(\{x\}) \subseteq \Lambda_r - cl(\{z\})$ and $y \notin \Lambda_r - cl(\{z\}) \Rightarrow y \notin \Lambda_r - cl(\{x\}) \Rightarrow \Lambda_r - cl(\{x\}) \Rightarrow \Lambda_r - cl(\{x\}) \Rightarrow X_r - cl$

 $(2) \Rightarrow (1)$ Suppose $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Then \exists a point z in X such that $z \in \Lambda_r - cl(\{x\})$ and $z \notin \Lambda_r - cl(\{y\})$. That implies \exists a Λ_r -open set V containing z such that $xv \in V$ and $y \notin V$. That is, V is a Λ_r -open set containing x but not y. If $y \in \Lambda_r - ker(\{x\})$, then $x \in \Lambda_r - cl(\{y\})$. That implies for every Λ_r -open set G containing x, $G \cap \{y\} \neq \emptyset$. That is, $y \in G$. By this contradiction, $y \notin \Lambda_r - ker(\{x\})$ and hence $\Lambda_r - ker(\{x\}) \neq \Lambda_r - ker(\{y\})$.

Theorem 4. For a topological space (X, τ) , the following are equivalent:

- (1) (X, τ) is $\Lambda_r R_0$,
- (2) For any non-empty set A and $G \in \Lambda_r O(X, \tau)$ such that $A \cap G \neq \emptyset$, $\exists F \in \Lambda_r C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subseteq G$,
- (3) For any $G \in \Lambda_r O(X, \tau)$, $G = \cup \{F/F \in \Lambda_r C(X, \tau) \text{ and } F \subseteq G\}$,
- (4) For any $F \in \Lambda_r C(X, \tau)$, $F = \cap \{G/G \in \Lambda_r O(X, \tau) \text{ and } F \subseteq G\}$,
- (5) For any $x \in X$, $\Lambda_r cl(\{x\}) \subseteq \Lambda_r ker(\{x\})$,

(6) For any $x, y \in X$, $y \in \Lambda_r - cl(\{x\}) \Leftrightarrow x \in \Lambda_r - cl(\{y\})$.

Proof. (1) \Rightarrow (2) Let *A* be any nonempty subset of *X* and *G* be a Λ_r -open set such that $A \cap G \neq \emptyset$. Let $x \in A \cap G$. Since (X, τ) is $\Lambda_r - R_0$, $x \in G \Rightarrow \Lambda_r - cl(\{x\}) \subseteq G$. Since $x \in A$, $\Lambda_r - cl(\{x\}) \cap A \neq \emptyset$. Thus $\Lambda_r - cl(\{x\})$ is a Λ_r -closed set contained in *G* and $A \cap \Lambda_r - cl(\{x\}) \neq \emptyset$.

(2) \Rightarrow (3) Let $G \in \Lambda_r O(X, \tau)$ and $x \in G$. Then by (2), $\exists F \in \Lambda_r C(X, \tau)$ such that $\{x\} \cap F \neq \emptyset$ and $F \subseteq G$. That implies $x \in F$ where $F \in \Lambda_r C(X, \tau)$ and $F \subseteq G$ and hence $x \in \bigcup \{F/F \in \Lambda_r C(X, \tau) \text{ and } F \subseteq G\}$. Therefore $G \subseteq \bigcup \{F/F \in \Lambda_r C(X, \tau) \text{ and } F \subseteq G\}$. Also $\bigcup \{F/F \in \Lambda_r C(X, \tau) \text{ and } F \subseteq G\} \subseteq G$. Hence $G = \bigcup \{F/F \in \Lambda_r C(X, \tau) \text{ and } F \subseteq G\}$.

(3) \Rightarrow (4) Let $F \in \Lambda_r C(X, \tau)$. Then $F^c \in \Lambda_r O(X, \tau)$. By (3), $F^c = \bigcup \{G^c/G^c \in \Lambda_r C(X, \tau) \text{ and } G^c \subseteq F^c\}$. That implies $F = \cap \{G/G \in \Lambda_r O(X, \tau) \text{ and } F \subseteq G\}$.

 $(4) \Rightarrow (5) \text{ Let } y \notin \Lambda_r - ker(\{x\}). \text{ Then } x \notin \Lambda_r - cl(\{y\}). \text{ That implies } \exists a \Lambda_r \text{-open set } V$ containing *x* such that $V \cap \{y\} = \emptyset$ and hence $\Lambda_r - cl(\{y\}) \cap V = \emptyset$. By (4), $\Lambda_r - cl(\{y\}) = \bigcap\{G/G \in \Lambda_r O(X, \tau) \text{ and } \Lambda_r - cl(\{y\}) \subseteq G\}. \text{ Since } x \in V, x \notin \Lambda_r - cl(\{y\}) \text{ and}$ hence $\exists G \in \Lambda_r O(X, \tau) \text{ such that } \Lambda_r - cl(\{y\}) \subseteq G \text{ and } x \notin G. \text{ Therefore } \Lambda_r - cl(\{x\}) \cap G = \emptyset$ and hence $y \notin \Lambda_r - cl(\{x\}). \text{ Therefore } \Lambda_r - cl(\{x\}) \subseteq \Lambda_r - ker(\{x\}).$

 $(5) \Rightarrow (6)$ If $y \in \Lambda_r - cl(\{x\})$, then $y \in \Lambda_r - ker(\{x\})$ by (5). That implies $x \in \Lambda_r - cl(\{y\})$. Similarly, if $x \in \Lambda_r - cl(\{y\})$, then by (5), $x \in \Lambda_r - ker(\{y\})$ and hence $y \in \Lambda_r - cl(\{x\})$. Thus $x \in \Lambda_r - cl(\{y\}) \Leftrightarrow y \in \Lambda_r - cl(\{x\})$.

 $(6) \Rightarrow (1)$ Let $G \in \Lambda_r O(X, \tau)$ and $x \in G$. If $y \notin G$, then $y \in X - G$ and hence $\Lambda_r - cl(\{y\}) \subseteq X - G$ since $\Lambda_r - cl(\{y\})$ is the smallest Λ_r -closed set containing y. Therefore $\Lambda_r - cl(\{y\}) \cap G = \emptyset$ and hence $x \notin \Lambda_r - cl(\{y\})$. By (6), $y \notin \Lambda_r - cl(\{x\})$. Therefore $\Lambda_r - cl(\{x\}) \subseteq G$ and hence (X, τ) is $\Lambda_r - R_0$.

Corollary 1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\Lambda_r R_0$,
- (2) For any $x \in X$, $\Lambda_r cl(\{x\}) = \Lambda_r ker(\{x\})$.

Theorem 5. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\Lambda_r R_0$
- (2) If F is Λ_r -closed, then $F = \Lambda_r ker(F)$
- (3) If F is Λ_r -closed and $x \in F$, then $\Lambda_r ker(\{x\}) \subseteq F$
- (4) If $x \in X$, then $\Lambda_r ker(\{x\}) \subseteq \Lambda_r cl(\{x\})$.

Proof. (1) \Rightarrow (2) Let *F* be a Λ_r -closed set and $x \notin F$. Then X - F is Λ_r -open and $x \in X - F$. By (1), $\Lambda_r - cl(\{x\}) \subseteq X - F$ and hence $\Lambda_r - cl(\{x\}) \cap F = \emptyset$. That implies $x \notin \Lambda_r - ker(F)$. Therefore $\Lambda_r - ker(F) \subseteq F$. Also $F \subset \Lambda_r - ker(F)$. Hence $F = \Lambda_r - ker(F)$.

(2) \Rightarrow (3) Let *F* be a Λ_r -closed set and $x \in F$. Then $\Lambda_r - ker(\{x\}) \subseteq \Lambda_r - ker(F) = F$.

(3) \Rightarrow (4) Since $x \in \Lambda_r - cl(\{x\})$ and $\Lambda_r - cl(\{x\})$ is Λ_r -closed, by (3), $\Lambda_r - ker(\{x\}) \subseteq \Lambda_r - cl(\{x\})$.

 $(4) \Rightarrow (1) \text{ Since } x \in \Lambda_r - cl(\{y\}) \Leftrightarrow y \in \Lambda_r - cl(\{x\}), (X, \tau) \text{ is } \Lambda_r - R_0.$

The following Examples 1 and 2 show that $\Lambda_r - T_0$ and $\Lambda_r - R_0$ are independent.

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{b, c\}\}$. Here (X, τ) is $\Lambda_r - R_0$ but it is not $\Lambda_r - T_0$.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{a, b\}\}$. Here (X, τ) is $\Lambda_r - T_0$ but it is not $\Lambda_r - R_0$.

3. $\Lambda_r - R_1$ Spaces

Definition 2. A space (X, τ) is $\Lambda_r - R_1$ if for each $x, y \in X$ with $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$, $\exists \Lambda_r$ -open sets U and V such that $\Lambda_r - cl(\{x\}) \subseteq U$, $\Lambda_r - cl(\{y\}) \subseteq V$ and $U \cap V = \emptyset$.

Proposition 1. If (X, τ) is $\Lambda_r - R_1$, then (X, τ) is $\Lambda_r - R_0$.

Proof. Let (X, τ) be $\Lambda_r - R_1$. Let U be Λ_r -open in X and $x \in U$. For each $y \in X - U$, $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Then \exists disjoint Λ_r -open sets U_y and V_y such that $\Lambda_r - cl(\{x\}) \subseteq U_y$ and $\Lambda_r - cl(\{y\}) \subseteq V_y$. Take $V = \bigcup \{V_y / y \in X - U\}$. Then V is Λ_r -open, $X - U \subseteq V$ and $x \notin V$. Therefore $\Lambda_r - cl(\{x\}) \subseteq X - V \subseteq U$ and hence (X, τ) is $\Lambda_r - R_0$.

Theorem 6. If (X, τ) is $\Lambda_r - T_2$, then (X, τ) is $\Lambda_r - R_1$.

Proof. Let $x, y \in X$ such that $x \neq y$ and $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Since (X, τ) is $\Lambda_r - T_2$, $\exists \Lambda_r$ -open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$. That is, $\{x\} \subseteq U$ and $\{y\} \subseteq V$. Since (X, τ) is $\Lambda_r - T_2$, it is $\Lambda_r - T_1$. Therefore for every $x \in X, \{x\} = \Lambda_r - cl(\{x\})$. Thus $\Lambda_r - cl(\{x\}) \subseteq U$, $\Lambda_r - cl(\{y\}) \subseteq V$ and $U \cap V = \emptyset$. Hence (X, τ) is $\Lambda_r - R_1$.

Remark 1. The converse of the above theorem need not be true. For example, let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then

$$\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, d\}\}.$$

Here (X, τ) is $\Lambda_r - R_1$ but not $\Lambda_r - T_2$.

Note that $\Lambda_r - T_0$ and $\Lambda_r - R_1$ are independent as in the following examples 3 and 4.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}$. Here (X, τ) is $\Lambda_r - T_0$ but it is not $\Lambda_r - R_1$.

Example 4. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Here (X, τ) is $\Lambda_r - R_1$ but it is not $\Lambda_r - T_0$.

Theorem 7. For a space (X, τ) , the following statements are equivalent:

- (1) (X, τ) is $\Lambda_r R_1$,
- (2) If $x, y \in X$ such that $\Lambda_r cl(\{x\}) \neq \Lambda_r cl(\{y\})$, then $\exists \Lambda_r$ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $x \notin F_2$, $y \in F_2$ and $X = F_1 \cup F_2$.

Proof. (1) \Rightarrow (2) Let $x, y \in X$ such that $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Then by (1), \exists disjoint Λ_r -open sets U and V such that $\Lambda_r - cl(\{x\}) \subseteq U$ and $\Lambda_r - cl(\{y\}) \subseteq V$. Take $F_1 = X - V$ and $F_2 = X - U$. Then F_1 and F_2 are Λ_r -closed sets such that $x \in F_1$, $y \notin F_1$, $x \notin F_2$, $y \in F_2$ and $X = F_1 \cup F_2$.

 $(2) \rightarrow (1)$ Let $x, y \in X$ such that $\Lambda_r - cl(\{x\}) \neq \Lambda_r - cl(\{y\})$. Then by (2) $\exists \Lambda_r$ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $x \notin F_2$, $y \in F_2$ and $X = F_1 \cup F_2$. Take $U = X - F_2$ and $V = X - F_1$. Then U and V are Λ_r -open sets, $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Therefore (X, τ) is $\Lambda_r - T_2$ and hence (X, τ) is $\Lambda_r - R_1$.

4. $\Lambda_r - D_k$ Spaces

Definition 3. Let (X, τ) be a topological space and A be a subset of X. Then A is called Λ_r difference set (shortly Λ_r -D set) if $\exists U, V \in \Lambda_r O(X, \tau)$ such that $U \neq X$ and A = U - V. The collection of all Λ_r -difference sets of (X, τ) is denoted by $\Lambda_r D(X, \tau)$.

Remark 2. Every Λ_r -open set A different from X is a Λ_r -D set if U = A and $V = \emptyset$. But the converse need not be true. For example, let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$ and

 $\Lambda_r D(X, \tau) = \{\emptyset, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{c\}, \{a\}\}.$ Here $\{a\}$ is a Λ_r -D set but not Λ_r -open set.

Definition 4. A space (X, τ) is called

- (1) $\Lambda_r D_0$ if for $x, y \in X$, $x \neq y$, $\exists a \Lambda_r D$ set containing one of x and y but not the other
- (2) $\Lambda_r D_1$ if for $x, y \in X$, $x \neq y$, $\exists \Lambda_r D$ sets U and V in X such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$
- (3) $\Lambda_r D_2$ if for $x, y \in X$, $x \neq y$, $\exists \Lambda_r D$ sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 8. A space (X, τ) is $\Lambda_r - D_0$ iff it is $\Lambda_r - T_0$.

Proof. Suppose (X, τ) is $\Lambda_r - D_0$. Let $x, y \in X$ such that $x \neq y$. Then \exists an Λ_r -D set A containing one of x and y but not the other, say $x \in A$ but $y \notin A$. Since A is a Λ_r -D set, A = U - V where $U \neq X$ and $U, V \in \Lambda_r O(X, \tau)$. Since $x \in A, x \in U$ and $x \notin V$. For $y \notin A$, we have two cases (a) $y \notin U$

(b) $y \in U$ and $y \in V$. In case (a), $x \in U$ but $y \notin U$. In case (b), $y \in V$ but $x \notin V$. Hence (X, τ) is $\Lambda_r - T_0$. Conversely, suppose (X, τ) is $\Lambda_r - T_0$. Let $x, y \in X$ such that $x \neq y$. Then \exists an Λ_r -open set U containing one of x and y but not the other, say $x \in U$ but $y \notin U$. Then $U \neq X$ and hence U is a Λ_r -D set. Therefore U is a Λ_r -D set containing x but not y. Hence (X, τ) is $\Lambda_r - D_0$.

The following examples 5 and 6 show that $\Lambda_r - R_0$ and $\Lambda_r - D_0$ are independent.

Example 5. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{a, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{b\}, \{a, c\}\}$. Here (X, τ) is $\Lambda_r - R_0$ but it is not $\Lambda_r - D_0$.

Example 6. Let $X = \{a, b\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}\}$. Here (X, τ) is $\Lambda_r - D_0$ but it is not $\Lambda_r - R_0$.

Remark 3. Examples 7 and 8 below show that $\Lambda_r - R_1$ and $\Lambda_r - D_0$ are independent.

Example 7. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c, d\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{b, c, d\}\}$. Here (X, τ) is $\Lambda_r - R_1$ but it is not $\Lambda_r - D_0$.

Example 8. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{a, b\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{b\}, \{a, b\}\}$. Here (X, τ) is $\Lambda_r - D_0$ but it is not $\Lambda_r - R_1$.

Theorem 9. A space (X, τ) is $\Lambda_r - D_1$ iff it is $\Lambda_r - D_2$.

Proof. Suppose (X, τ) is $\Lambda_r - D_1$. Then for each pair of distinct points $x, y \in X$, we have Λ_r -D sets A and B such that $x \in A$, $y \notin A$ and $y \in B$, $x \notin B$. Let $A = U_1 - V_1$ and $B = U_2 - V_2$. Then U_1, V_1, U_2 and V_2 are Λ_r -open sets, $U_1 \neq X$ and $U_2 \neq X$. For $x \notin B$, we have two cases (i) $x \notin U_2$ (ii) $x \in U_2$ and $x \in V_2$.

Case(i) $x \notin U_2$ then since $y \notin A$, either $y \notin U_1$ or ($y \in U_1$ and $y \in V_1$).

If $y \notin U_1$, from $y \in B = U_2 - V_2$, it follows that $y \in U_2 - (V_2 \cup U_1)$. From $x \in A = U_1 - V_1$ and $x \notin U_2$, $x \in U_1 - (V_1 \cup U_2)$. Also $(U_2 - (V_2 \cup U_1)) \cap (U_1 - (V_1 \cup U_2)) = \emptyset$. If $y \in U_1$ and $y \in V_1$, then $x \in U_1 - V_1$. That implies $(U_1 - V_1) \cap V_1 = \emptyset$.

Case(ii) $x \in U_2$ and $x \in V_2$ then we have $y \in B = U_2 - V_2$, $x \in V_2$ and $(U_2 - V_2) \cap V_2 = \emptyset$. Hence (X, τ) is $\Lambda_r - D_2$.

Conversely, suppose (X, τ) is $\Lambda_r - D_2$. Let $x, y \in X$ such that $x \neq y$. Then $\exists \Lambda_r - D$ sets A and B such that $x \in A$, $y \in B$ and $A \cap B = \emptyset$. Therefore $x \in A$, $y \notin A$ and $y \in B$, $x \notin B$. Hence (X, τ) is $\Lambda_r - D_1$.

REFERENCES

Corollary 2. If (X, τ) is $\Lambda_r - D_1$, then it is $\Lambda_r - T_0$.

Remark 4. The converse of the above corollary need not be true. For example, let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{c\}, \{a, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{c\}, \{a, c\}\}$ and $\Lambda_r D(X, \tau) = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Here (X, τ) is $\Lambda_r - T_0$ but not $\Lambda_r - D_1$.

Remark 5. Examples 9 and 10 below show that $\Lambda_r - R_0$ and $\Lambda_r - D_2$ are independent.

Example 9. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Here (X, τ) is $\Lambda_r - R_0$ but it is not $\Lambda_r - D_2$.

Example 10. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Here (X, τ) is $\Lambda_r - D_2$ but it is not $\Lambda_r - R_1$.

Similar to the previous cases the examples 11 and 12 show that $\Lambda_r - R_1$ and $\Lambda_r - D_1$ are independent.

Example 11. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Here (X, τ) is $\Lambda_r - R_1$ but it is not $\Lambda_r - D_1$.

Example 12. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Here (X, τ) is $\Lambda_r - D_1$ but it is not $\Lambda_r - R_1$.

References

[1] M. Caldas and S. Jafar. On some low separation axioms in topological space. *Houston Journal of Math*, 29:93–104, 2003.