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Abstract. We consider a series of configurations defined by fibers of a given base configuration. We prove
that Markov degree of the configurations is bounded from above by the Markov complexity of the base
configuration. As important examples of base configurations we consider incidence matrices of graphs
and study the maximum Markov degree of configurations defined by fibers of the incidence matrices. In
particular we give a proof that the Markov degree for two-way transportation polytopes is three.
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1. Introduction

The study of Markov bases has been developing rapidly since the seminal paper of Diaconis
and Sturmfels [6], which established the equivalence of a Markov basis for a discrete exponential
model in statistics and a generating set of a corresponding toric ideal. See [2, 8, 12] for terminology
of algebraic statistics and toric ideals used in this paper.

When we study Markov bases for a specific problem, usually we are not faced with a single
configuration, but rather with a series of configurations, possibly parameterized by a few param-
eters. For example, Markov bases associated with complete bipartite graphs KI,J (in statistical
terms, independence model of I ⇥ J two-way contingency tables) are parameterized by I and J.
In this case, Markov bases consist of moves of degree two irrespective of I and J. In more gen-
eral cases, some measure of complexity of Markov bases grows with the parameter and we are
interested in bounding the growth.

There are some typical procedures to generate a series of configurations based on a given set
of configurations. Perhaps the most important construction is the higher Lawrence lifting of a
configuration, for which Santos and Sturmfels [16] described the growth by the notion of Graver
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complexity. Another important construction is the nested configuration ([15]), where generated
series of configurations basically inherit nice properties of original configurations. In this paper
we define a new procedure to generate a series of configurations using fibers of a given config-
uration, which we call the base configuration. This construction is closely related to the higher
Lawrence lifting of the base configuration and using this fact we prove that Markov degree of the
configurations is bounded from above by the Markov complexity of the base configuration.

There are some nice problems, such as the independence model of two-way contingency tables
(corresponding to complete bipartite graphs), where the moves of degree two forms a Markov
basis. When a minimal Markov basis contains a move of degree three or higher, it is usually very
hard to control measures of complexity of Markov bases. A notable exception is the conjecture
by [5] that the Markov degree associated with the Birkho↵ polytope is three, i.e., the toric ideal
associated with the Birkho↵ polytope is generated by binomials of degree at most three. This
conjecture was proved in [19]. In view of [9] and [19], Christian Haase (personal communication,
2013) suggested that the Markov degree associated with two-way transportation polytopes and
flow polytopes is three. Very recently Domokos and Joó [7] gave a proof of this general conjecture.
Adapting the arguments in [19], we give a proof that the Markov degree associated with two-way
transportation polytopes is three in Section 4.1. Two-way transportation polytopes are important
examples in our framework, since they are fibers of the incidence matrix of a complete bipartite
graph.

The organization of this paper is as follows. In Section 2 we set up the framework of this
paper and prove the main theorem that the Markov degree of the configurations defined by fibers
of a base configuration is bounded from above by the Markov complexity of the base configu-
ration. In the remaining sections of this paper we investigate the maximum Markov degree and
the Markov complexity of some important base configurations. In Section 3 we study incidence
matrices of complete graphs and in Section 4 we study those of complete bipartite graphs as base
configurations. We end the paper with some discussions in Section 5.

2. Main result

Let A be a d ⇥ n configuration matrix. Elements of the integer kernel kerZ A of A are called
moves for A. As in Section 1.5.1 of [12] we assume that there exists a d-dimensional row vector
v such that vA = (1, 1, . . . , 1). Let N = {0, 1, 2, . . . } denote the set of non-negative integers and let
NA = {Ax | x 2 Nn}. For b 2 NA

FA,b = {x 2 Nn | Ax = b}

is the b-fiber of A. Each fiber FA,b is a finite set and non-empty for b 2 NA. We denote the size of
FA,b by ⌫(b) = |FA,b|. Hence with an appropriate order the elements of FA,b are enumerated as

FA,b = {x1, . . . , x⌫(b)}.

We look at xi, i = 1, . . . , ⌫(b), as n-dimensional column vectors and define an n ⇥ ⌫(b) matrix as

A
b

= (x1, . . . , x⌫(b)).
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Note that x 2 FA,b implies

vb = vAx = |x| = x1 + · · · + xn > 0

if x , 0. Hence for ṽ = vA/(vb)
ṽA

b

= (1, 1, . . . , 1), (1)

and A
b

is a configuration.

Remark 1. The configuration A
b

corresponds to the generalized hypergeometric distribution or
the “A-hypergeometric distribution” (see [18], [14]) over the fiber FA,b. Hence our construction
is natural also from the viewpoint of statistics.

Consider the set of moves for A
b

of degree at most m. The Markov degree MD(A
b

) of A
b

is the
minimum value of m such that the moves of degree at most m form a Markov basis (cf. [19, 11]).
We are interested in the maximum of MD(A

b

) when b ranges over NA:

max
b2NA

MD(A
b

).

Let A(N) denote the N-th Lawrence lifting of A (cf. [16]). The moves for A(N) are written as
z = (z1, . . . zN), such that

PN
k=1 zk = 0 and zk 2 kerZ A, k = 1, . . . ,N. In this paper, we call zk the

k-th layer or slice of z. The type of z is the number of non-zero layers among z1, . . . , zN :

type(z) = |{k | zk , 0}|.

Let G
⇣
A(N)
⌘

denote the Graver basis of A(N). Then the Graver complexity of A is defined (cf.
[16, 4, 13]) as

GC(A) = sup

0
BBBBBB@{0} [

8>><
>>: type(x)

�������
x 2
[

N�1

G
⇣
A(N)
⌘
9>>=
>>;

1
CCCCCCA ,

where {0} is needed for the case that the columns of A are linearly independent. Santos and Sturm-
fels [16] gave an explicit expression for the Graver complexity, which we will use for computing
the Graver complexity of some configurations. The Markov complexity MC(A) of A is defined as
the minimum value of m such that the moves of type at most m form a Markov basis for every
A(N). Note that MC(A)  GC(A) since a minimal Markov basis is contained in the Graver basis.

Now we are ready to state our main theorem.

Theorem 1. The Markov degree of A
b

is bounded from above by the Markov complexity of A:

max
b2NA

MD(A
b

)  MC(A). (2)

Before giving a proof, we discuss how a fiber of A
b

is embedded in a fiber of some A(N). For
c 2 NA

b

consider an element y = (y1, . . . , y⌫(b)) of FA
b

,c. By

c = A
b

y = x1y1 + · · · + x⌫(b)y⌫(b)
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and by (1), we see that |y| = y1+ · · ·+y⌫(b) = ṽc is common for all y 2 FA
b

,c. Let N = |y|, y 2 FA
b

,c.
Then y 2 FA

b

,c is identified with a multiset {w1, . . . ,wN} of elements (columns) of A
b

, where xi is
repeated yi times, e.g.:

x1 = w1 = · · · = wy1 , x2 = wy1+1 = · · · = wy1+y2 , . . .

In this notation
wk 2 FA,b, k = 1, . . . ,N, and c = w1 + · · · + wN . (3)

Define a (dN + n)-dimensional integer vector (b

(N), c) as

(b

(N), c) =

0
BBBBBBBBBBBBBBB@

b

...
b

c

1
CCCCCCCCCCCCCCCA
, (4)

where b is repeated N times on the right-hand side. For (b

(N), c) 2 NA(N), an element of the
fiber FA(N),(b

(N),c) of A(N) is written as w = (w1, . . . ,wN), where wk 2 FA,b, k = 1, . . . ,N, and
w1 + · · ·+wN = c. This is the same as (3). Hence any element of the fiber FA

b

,c of A
b

corresponds
to an element of the fiber FA(N),(b

(N),c) of A(N). This correspondence between FA
b

,c and FA(N),(b

(N),c)
is one-to-one except for the permutation of vectors w1, . . . ,wN . Note that the same N b’s on the
right-hand side of (4) may be di↵erent for general fibers of A(N). Hence the set of fibers NA

b

for
A

b

is a subset of the set of fibers [N�1NA(N). As discussed in [10], Markov bases for a subset of
fibers may be smaller than the full Markov bases. This fact is reflected in the inequality in (2).

Now we give a proof of Theorem 1.
Proof. [Proof of Theorem 1] Define a map f

b

: FA(N),(b

(N),c) ! FA
b

,c by

f
b

(w) = y = (y1, . . . , y⌫(b)), yi = |{k | wk = xi}|.

Then f
b

is a surjection and furthermore

f
b

(w) =
NX

k=1

f
b

((0, . . . , 0,wk, 0, . . . , 0)) =
NX

k=1

(0, . . . , 0, 1
i:xi=wk

, 0, . . . , 0).

For any y

(s), y(t) 2 FA
b

,c we choose

w

(s) 2 f �1
b

(y

(s)), w

(t) 2 f �1
b

(y

(t))

and we connect w

(s) and w

(t) by a Markov basis consisting of moves of type at most MC(A) of
A(N). Denote the path from w

(s) to w

(t) in FA(N),(b

(N),c) as

w

(s) = w

(0) ! w

(1) ! · · ·! w

(T ) = w

(t).

Let y

(l) = f
b

(w(l)), l = 0, 1 . . . ,T . Then

A
b

y

(l) =

⌫(b)X

i=1

y(l)
i xi = w

(l)
1 + · · · + w

(l)
N = c
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and y

(l) 2 FA
b

,c. Hence y

(l+1) � y

(l) is a move for A
b

. Its degree is bounded as

1
2
|y(l+1) � y

(l)| = 1
2
| f

b

(w(l+1)) � f
b

(w(l))|

=
1
2
|
X

k:w(l+1)
k ,w

(l)
k

f
b

((0, . . . , 0,w(l+1)
k , 0, . . . , 0)) � f

b

((0, . . . , 0,w(l)
k , 0, . . . , 0))|

 1
2

X

k:w(l+1)
k ,w

(l)
k

| f
b

((0, . . . , 0,w(l+1)
k , 0, . . . , 0)) � f

b

((0, . . . , 0,w(l)
k , 0, . . . , 0))|

= |{k | w(l+1)
k , w

(l)
k }| = type(w(l+1) � w

(l))
 MC(A).

Thus y

(s) and y

(t) can be connected by moves of degree less than or equal to MC(A).

In Theorem 1 an interesting question is when (2) holds with equality. At this point we give
a simple but important example. As the base configuration consider a 1 ⇥ n row vector A =
(1, 1, . . . , 1). Then for any positive integer b, the fiber Ab is the configuration of Veronese-type
(Chapter 14 of [17]), whose Markov degree is two. Hence max

b2NA MD(A
b

) = 2. On the other
hand, A(N) is the configuration matrix of the complete bipartite graph Kn,N . Since A(N), N � 2, has
a Markov basis consisting of moves of degree two, we have MC(A) = 2. Hence the equality in (2)
holds for this case. Also note that GC(A) = n, since the elements of Graver basis corresponds to
cycles of Kn,N .

For bounding the Markov complexity MC(A) from below, we will find an indispensable move
for the higher Lawrence lifting A(N) of A. The following proposition is useful for this purpose. We
use the notation [N] = {1, 2, . . . ,N}.

Proposition 1. Let z = (z1, . . . , zN) be a move for A(N) such that each slice zk is a non-zero
indispensable move for A. Then z is indispensable if and only if

X

k2M

zk , 0

for every non-empty proper subset M of [N].

Proof. Write z by its positive part and negative part as z = z

+ � z

� and let b

(N) = A(N)
z

+. z

is an indispensable move if and only if FA(N),b(N) = {z+, z�} is a two-element set. Also write each
slice zk as zk = z

+
k � z

�
k and let bk = Az

+
k . We are assuming that FA,bk = {z+k , z�k } is a two-element

set for each k. Let x = (x1, . . . , xN) 2 FA(N),b(N) . Then Axk = bk for each k and hence xk is either
z

+
k or z

�
k . Let M = {k | xk = z

+
k }. Then x is di↵erent from both z

+ and z

� if and only if M is a
non-empty proper subset of [N]. Now

PN
k=1 xk =

PN
k=1 z

�
k = c (say) implies

0 =
NX

k=1

(xk � z

�
k ) =

X

k2M

(z

+
k � z

�
k ) =

X

k2M

zk. (5)

Hence z is indispensable if and only if (5) hold only for M = ; or M = [N].
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Note that
P

k2M zk = 0 if and only if
P

k2MC zk = 0 and any slice k is either in M or in MC .
Hence in order to prove that z is indispensable, we can start from arbitrary slice zk and show that
any sum of slices including k does not vanish except for the sum of all slices.

3. Complete graphs as base configurations

In this section we study the maximum Markov degree and the Markov complexity when the
base configuration A is an incidence matrix of a small complete graph without self-loops (Section
3.1) or with self-loops (Section 3.2).

In b = Ax, the elements of x are the non-negative integer weights of the edges and the elements
of b are degrees of vertices, where the degree of a vertex v is the sum of weights of the edges having
v as an endpoint. Note that one self-loop {v, v} gives two degrees to the vertex v.

In the following, by g we denote a graph with non-negative weights attached to the edges. The
elements of a fiber FA,b are the graphs g with the same degree sequence b. See Figure 1 below for
an example.

Elements of a fiber FA
b

,c can be identified with multisets of graphs g such that the sum of
weights of each edge is common. A move of degree k for the configuration A

b

corresponds to
replacing k graphs g1, . . . , gk 2 FA,b with ĝ1, . . . , ĝk 2 FA,b such that the sum of weights of each
edge is preserved.

3.1. Complete graph on four vertices without self-loops

In this section we take the incidence matrix of the complete graph K4 on four vertices without
self-loops as the base configuration A. At the end of this section we give some comments on larger
complete graphs. In particular we present a conjecture on K5.

Let

A =

0
BBBBBBBBBBBBB@

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

1
CCCCCCCCCCCCCA
. (6)

We prove that both sides of (2) are two and the equality holds for this A.

Theorem 2. For A in (6)
max
b2NA

MD(A
b

) = MC(A) = 2.

By 4ti2([1]) we easily obtain GC(A) = 3, which equals the maximum 1-norm of G(G(A))
(Theorem 3 of [16]).

Denote the four vertices as a, b, c, d, corresponding to the rows of A. There are six edges
corresponding to the columns of A. Let E = {ab, ac, ad, bc, bd, cd} denote the edge set. A graph g

is identified with a 6-dimensional non-negative integer vector

g = (g(ab), g(ac), g(ad), g(bc), g(bd), g(cd)) 2 N6,

whose elements represent weights of the edges. For two graphs g, ĝ in the same fiber of A, we
write z = g � ĝ = (z(ab), . . . , z(cd)), which is a move for A.
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We prove two lemmas.

Lemma 1. Let g, ĝ be graphs in the same fiber of A and let z = g � ĝ. Then

z(ab) = z(cd), z(ac) = z(bd), z(ad) = z(bc).

Proof. By symmetry it su�ces to prove z(ab) = z(cd). Let deg(a) denote the degree of vertex
a. We have

deg(a) = g(ab) + g(ac) + g(ad) = ĝ(ab) + ĝ(ac) + ĝ(ad),
deg(b) = g(ab) + g(bc) + g(bd) = ĝ(ab) + ĝ(bc) + ĝ(bd).

Hence

deg(a) + deg(b) = 2g(ab) + g(ac) + g(ad) + g(bc) + g(bd)
= 2ĝ(ab) + ĝ(ac) + ĝ(ad) + ĝ(bc) + ĝ(bd).

Similarly

deg(c) + deg(d) = 2g(cd) + g(ac) + g(ad) + g(bc) + g(bd)
= 2ĝ(cd) + ĝ(ac) + ĝ(ad) + ĝ(bc) + ĝ(bd).

Then
deg(a) + deg(b) � (deg(c) + deg(d)) = 2(g(ab) � g(cd)) = 2(ĝ(ab) � ĝ(cd))

and
g(ab) � ĝ(ab) = g(cd) � ĝ(cd).

Lemma 2. Let g, ĝ in the same fiber of A and let g(e1) , ĝ(e1) for some e1 2 E. Then there exists
a loop (e1, e2, e3, e4) of length 4 passing each vertex, such that g(ei) , ĝ(ei), i = 1, . . . , 4, and the
signs of g(ei) � ĝ(ei) alternate.

Proof. By symmetry we may assume that e1 = ab and g(ab)� ĝ(ab) > 0. Then by the previous
lemma g(cd) � ĝ(cd) > 0. Since deg(a) is common in g and ĝ, by symmetry we may assume that
g(ad) � ĝ(ad) < 0. Again by the previous lemma g(bc) � ĝ(bc) < 0. Then (ab, bc, cd, ad) is the
required loop.

We now give a proof of Theorem 2 based on the idea of distance reduction (cf. Chapter 6 of
[2]).

Proof. [Proof of Theorem 2] Obviously max
b2NA MD(A

b

) > 1. Hence by Theorem 1 it su�ces
to prove that MC(A) = 2. Let {g1, . . . , gN} and { ĝ1, . . . , ĝN} be two elements of the same fiber for
A(N). Let

S =
NX

k=1

|zk|, zk = gk � ĝk,

where | · | denotes the 1-norm of a 6-dimensional vector.
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Suppose S > 0. By symmetry we may assume that g1 , ĝ1. By Lemma 2 we may assume

z1(ab) > 0, z1(bc) < 0, z1(cd) > 0, z1(ad) < 0.

Because {g1, . . . , gN} and { ĝ1, . . . , ĝN} belong to the same fiber, we have
NX

k=1

zk(e) = 0

for each e 2 E (in particular for e = bc). Hence there exists k such that zk(bc) > 0. Let k = 2
without loss of generality. By Lemma 1 g2(ad) > ĝ2(ad). Let

eab = (1, 0, 0, 0, 0, 0) (7)

denote the graph with weight 1 only on the edge ab. Similarly define ebc, ecd, ead. Now consider
the move

(g1, g2)! (g1 + eab � ebc + ecd � ead, g2 � eab + ebc � ecd + ead). (8)

Then the vectors on the right-hand side are non-negative and S is strictly decreased. This proves
MC(A) = 2.

Remark 2. Hidefumi Ohsugi gave a simple direct proof of max
b2NA MD(A

b

) = 2 by identifying A
b

with a Segre–Veronese configuration. See [3] for the definition of Segre–Veronese configurations
and their application to algebraic statistics.

The move in (8) can be understood as an exchange or swap of edges between two graphs
g1, g2, i.e., edges bc and ad are given from g1 to g2, and edges ab and cd are taken from g2 to g1.
A move of degree two for A

b

and a move of type two for A(N) is an exchange of edges between
two graphs. Similarly a move of degree k for A

b

and a move of type k for A(N) is an exchange of
edges among k graphs.

At this point, we make some remarks on larger complete graphs without self-loops. Consider
the complete graph K5 of five vertices without self-loops and let

A =

0
BBBBBBBBBBBBBBBBBBB@

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

1
CCCCCCCCCCCCCCCCCCCA

(9)

be its incidence matrix. By 4ti2 we can check

MC(A) � 6, GC(A) = 15.

Concerning max
b2NA MD(A

b

) we make the following conjecture. For A in (9)

max
b2NA

MD(A
b

) = 2. (10)

Our conjecture is based on the numbers of moves of degrees two and three or higher in minimal
Markov bases for various A

b

in Table 1 computed with 4ti2. Note that there are no moves of
degree three or higher, as far as we could compute with 4ti2.

For the case K6 of 6 vertices, we can easily check that max
b2NA MD(A

b

) � 4.
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Table 1: Number of moves in minimal Markov bases for A
b

in the case of K5

b # moves of deg 2 # moves of deg �3
(2,2,2,1,1) 9 0
(2,2,2,2,2) 95 0
(3,2,2,2,1) 39 0
(3,3,2,1,1) 9 0
(3,3,2,2,2) 16 0
(3,3,3,2,1) 105 0
(3,3,3,3,2) 741 0
(4,2,2,2,2) 105 0
(4,3,2,2,1) 39 0
(4,3,3,1,1) 9 0
(4,3,3,2,2) 413 0
(4,3,3,3,1) 225 0
(4,3,3,3,3) 1893 0
(4,4,2,1,1) 9 0
(4,4,2,2,2) 216 0
(4,4,3,2,1) 105 0
(4,4,3,3,2) 1179 0
(4,4,4,2,2) 710 0
(4,4,4,3,1) 420 0
(4,4,4,3,3) 4032 0
(4,4,4,4,2) 2718 0
(4,4,4,4,4) 10581 0

3.2. Complete graph on three vertices with self-loops

We consider the incidence matrix of the complete graph on three vertices with self-loops as
the base configuration A:

A =

0
BBBBBBBB@

2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

1
CCCCCCCCA . (11)

The following theorem holds.

Theorem 3. For A in (11)
max
b2NA

MD(A
b

) = 3, MC(A) = 5. (12)

Furthermore max
b2NA\{(2,2,2)}MD(A

b

) = 2.

Incidentally we obtained GC(A) = 8 by 4ti2 and Theorem 3 of [16].
As stated in Theorem 3, the fiber with b = (2, 2, 2) is special. FA,(2,2,2) consists of five vectors
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and A(2,2,2) is given as

A(2,2,2) =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 0 0
0 0 2 1 0
0 0 0 1 2
1 0 0 0 1
0 2 0 1 0
1 0 1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

= (a1, a2, a3, a4, a5).

Columns of A(2,2,2) are displayed in Figure 1.

1

1

00

1

0

0

0

11

0

1

1

0

00

0

2

Column 1 of A(2,2,2) Column 4 of A(2,2,2) Columns 2,3,5 of A(2,2,2)
Figure 1: Graphs of the fiber FA,(2,2,2)

In this case rank A(2,2,2) = 4 and the toric ideal IA(2,2,2) associated with A(2,2,2) is a principal ideal
generated by the relation

a1 + 2a4 = a2 + a3 + a5.

Hence
MD(A(2,2,2)) = 3. (13)

To express vertices and edges, we label the vertices as Figure 2. Then for example we express the

Figure 2: Labels of vertices

self-loop {a, a} by an edge aa.

For the rest of this subsection we give a proof of Theorem 3.
It is easy to see that MD(A

b

)  2 if min(deg(a), deg(b), deg(c))  1. Hence from now on we
assume that the degrees of three vertices are at least two. For our proof we utilize the Graver basis
G(A) of A in (11). By 4ti2 or by checking the moves for A, it is easily verified that G(A) consists
of ten column vectors in (14) and those with the minus sign. Hence |G(A)| = 20. There are four
patterns of moves and patterns B and C are indispensable moves.
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A B(a) B(b) B(c) C(a) C(b) C(c) D(a) D(b) D(c)
aa 1 1 0 0 0 1 1 0 1 �1
ab �1 �1 �1 1 0 0 �2 2 �2 0
ac �1 �1 1 �1 0 �2 0 �2 0 2
bb 1 0 1 0 1 0 1 �1 0 1
bc �1 1 �1 �1 �2 0 0 0 2 �2
cc 1 0 0 1 1 1 0 1 �1 0

(14)

By using the notation in (7), the move A is written as

A = eaa + ebb + ecc � eab � ebc � eac.

We denote 20 moves of G(A) by A, B(a), . . . , D(c) and �A,�B(a), . . . ,�D(c). Moves A, B(a),
C(a), D(a), D(b), D(d) are displayed in Figure 3. For checking our proof of Theorem 3 it is
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1

-2

ሺܿሻࡰ
Figure 3: Moves A, B(a), C(a), D(a), D(b), D(c)

convenient to have graphs for B(b), B(c), C(b), C(c) in Figure 4.
For a move z 2 kerZ A ⇢ Z6, z , 0, there exists w 2 G(A) such that w + (z � w) = z is a

conformal sum, i.e., there is no cancellation of signs in this sum. In this case we write

w v z.

Here we are allowing the case z = w.
Let g, ĝ 2 N6 be two graphs in the same fiber FA,b of A. Then z = g � ĝ is a move and there

exists w 2 G(A) such that w v g � ĝ. In this case we say that “(g, ĝ) contains w”. Note that (g, ĝ)
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Figure 4: Moves B(b), B(c), C(b), C(c)

contains w if and only if ( ĝ, g) contains �w. Also if (g, ĝ) contains w then g�w � 0 (elementwise)
and

|(g � w) � ĝ| = |g � ĝ| � |w|.
When (g, ĝ) contains w, we denote g by g

w

, provided that there is no confusion about ĝ. For
example g�A

denotes a graph g in (g, ĝ) which contains the negative of the first column of (14).
Now we begin proving max

b2NA MD(A
b

) = 3.

I. Proof of max
b2NA MD(A

b

) = 3.
We choose two arbitrary elements of FA

b

,c = {y | A
b

y = c} and denote them by y and ŷ.
Although y and ŷ are multisets of graphs, by the embedding of a fiber of A

b

into a fiber of
A(N) discussed after Theorem 1, we index the graphs of y as g1, g2, . . . , gN and graphs of ŷ as
ĝ1, ĝ2, . . . , ĝN . Then

Agk = A ĝk = b, k = 1, . . . ,N, (15)
g1 + g2 + · · · + gN = ĝ1 + ĝ2 + · · · + ĝN = c. (16)

As in the proof of Theorem 2, let

S =
NX

k=1

|gk � ĝk|.

Then, S = 0 implies y = ŷ. We will show that if S > 0 there exists an exchange of edges among
some fixed number graphs in y or in ŷ such that S is decreased.

If S > 0, there exists a layer k satisfying gk , ĝk. By A(gk � ĝk) = 0, there exists w 2 G(A)
such that (gk, ĝk) contains w. In this case we say that there exists a pattern w among zk = gk � ĝk,
k = 1, . . . ,N. For example, suppose that the pattern B(a) exists. Then for some k, zk(aa) > 0 and
zk(ab) < 0. By 0 =

PN
k=1 zk, there have to be some other layers k0, k00 such that zk0(aa) < 0 and

zk00(ab) > 0. In this case we say that the edge aa is “in shortage” and the edge ab is “in excess” on
some layers other than k.

At this point we consider an easy case to decrease S , where there are g

A

and g�A

, i.e., there
are k and k0 such that (gk, ĝk) contains the move A and (gk0 , ĝk0) contains the move �A. Then we
can apply an exchange of edges (g

A

, g�A

)! (g

0
A

, g0�A

), where

g

0
A = gA � eaa � ebb � ecc + eab + ebc + eca = gA � A,
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g

0
�A = g�A + eaa + ebb + ecc � eab � ebc � eca = g�A + A.

By this degree-two move (15) and (16) are conserved. Obviously g

0
A and g

0
�A are non-negative

and S is immediately decreased. Similar consideration applies to other nine pairs of moves
(B(a),�B(a)), . . . , (D(c),�D(c)). Therefore, from now on, we ignore the case that there are
two layers containing any of these 10 pairs. Also note that by symmetry between y and ŷ, we only
need to consider one of A or �A.

We now distinguish various cases. We first consider the case that the pattern A (or �A) exists.

Case 1 A exists.
We are assuming that there exists some k such that (gk, ĝk) contains A. There are three
subcases depending on whether the pattern B exists or not on some other layer k0 , k. By
symmetry among a, b, c, we only need to consider B(a).

Case 1-1 B(a) exists.
Because of the existence of A and B(a), the edge aa is in shortage on some other layer
k00. The possible patterns are �C(c),�C(b),�D(b), or D(c). By symmetry between b
and c, we only need to consider �C(c) or �D(b). If �C(c) exists then S is decreased
by

g

0
A

= g

A

� C(c), g

0
�C(c) = g�C(c) + C(c)

and if �D(b) exists then S is decreased by

g

0
A

= g

A

� C(c), g

0
�D(b) = g�D(b) + C(c).

Here note that g�D(b) + C(c) � 0. We omit this kind of remark on non-negativity for
the rest this proof.

Case 1-2 �B(a) exists.
In this case we look at ŷ. S is decreased by

ĝ

0
�A = ĝ�A + B(a), ĝ

0
B(a) = ĝB(a) � B(a).

Case 1-3 None of B(a), �B(a) exists.
This case can be handled as in Case 1-1, since the edge aa is in shortage.

From now on, we assume that pattern ±A does not exist. For Case 2, we consider the existence
of the pattern ±D.

Case 2 D exists.
By symmetry we consider the case that there is some layer containing D(a). Since there is
D(a), the edge bb is in excess on some other layer. The possible patterns for this excess
are C(a),C(c), D(c), or B(b). Also the edge cc is in shortage. The possible patterns for this
shortage are �C(a),�C(b), D(b), or �B(c).

Note that we are assuming that C(a) and �C(a) do not simultaneously exist, i.e., at least one
of C(a) and �C(a) does not exist. If C(a) does not exist, then at least one of C(c), D(c),
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or B(b) exist. Similarly if �C(a) dos not exist at least one of �C(b), D(b) or �B(c) exist.
Hence at least one of C(c), D(c), B(b),�C(b), D(b), �B(c) exist.

Now by simultaneous symmetry (b, y, D(a))$ (c, ŷ,�D(a)), we only need to consider one
of C(c) and �C(b), one of D(c) and D(b), and one of �B(c) and B(b). Hence we will
examine the cases C(c), D(c), �B(c), in turn.

Case 2-1 D(a) and C(c) exist.
S is decreased by

g

0
D(a) = g

D(a) + C(c), g

0
C(c) = g

C(c) � C(c).

Case 2-2 D(a) and D(c) exist.
S is decreased by

g

0
D(a) = g

D(a) � D(a), g

0
D(c) = g

D(c) + D(a).

Case 2-3 D(a) and �B(c) exist.
S is decreased by

g

0
D(a) = g

D(a) � B(c), g

0
�B(c) = g�B(c) + B(c).

We have now examined all possible cases where ±D exists. From now on, we may assume
that pattern ±D does not exist.

We now consider the case that the pattern ±B exists.

Case 3 B exists.
By symmetry we assume that B(a) exists. Then because of the shortage of aa on other
layers, there exists pattern �C(c) or �C(b). Because of symmetry of vertices b and c, it is
enough to consider �C(c) only. Then because of the excess of bb, there exists pattern B(b)
or C(a).

Case 3-1 B(a), �C(c) and B(b) exist.
S is decreased by

g

0
B(a) = gB(a) � B(a), g

0
�C(c) = g�C(c) + C(c), g

0
B(b) = gB(b) � B(b).

Case 3-2 B(a), �C(c) and C(a) exist.
Note that already D(c) and �D(a) do not exist by our assumption. Also in Case 3-1 we
considered the existence of B(b). Hence here we consider the case that D(c), �D(a)
and B(b) do not exist, but C(a) exists. Then by the shortage of cc, there is a pattern
�C(b) or �B(c).

Case 3-2-1 B(a), �C(c), C(a) and �C(b) exist.
This case is di�cult. We renumber this case as Case 4 and will discuss this case
below.
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Case 3-2-2 B(a), �C(c), C(a) and �B(c) exist.
This case is also di�cult. We renumber this case as Case 5 and will discuss this
case below.

So far we did not use the fact that all graphs g1, . . . , gN belong to the same fiber FA,b of A.
Our argument before Case 3-2-1 apply not only to A

b

, but also to the higher Lawrence lifting
A(N). However there is a gap between two sides of (12). In order to show the left-hand side
max

b2NA MD(A
b

) = 3 we need to use that fact that g1, . . . , gN belong to the same fiber.
We now look at Case 4 from this viewpoint.

Case 4 B(a), �C(c), C(a) and �C(b) exist.
First note that the existence B(a) implies deg(a) � 2. Also the existence of C(a) implies
deg(b) � 2, deg(c) � 2. Hence the degree of each vertex is at least two. Then g

B(a) has
additional edges connecting to b and to c. The possible combinations of edges are

1) bc alone, 2) the pair (ab, ac), 3) the pair (bb, ac),
4) the pair (bc, cc), 5) the pair (bb, cc), or 6) the case that g

B(a) has two B(a).

These six cases are depicted in Figure 5. Existence of an additional edge is shown as the
weight of the form +p � q in Figure 5. +p means that we can subtract p edges without
producing a negative weight.

Consider the edge aa. The weight of aa in C(a) is zero. On the other hand in both �C(c) and
�C(b) its weight is �1. This extra shortage of aa implies that there exists another pattern
B(a) in addition to the already existing B(a), possibly on the same layer as the already
existing one or on another layer. The former case corresponds to 6) above.

Also note that �C(c) and �C(b) may be on the same layer, but in this case the weight of the
self-loop aa on the layer is less than or equal to �2 and our proof is not a↵ected.

Case 4-1 B(a), �C(c), C(a), �C(b) and B(a)1 exist.
S is decreased by

g

0
B(a)1
= g

B(a)1 + C(a), g

0
C(a) = g

C(a) � C(a).

Case 4-2 B(a), �C(c), C(a), �C(b) and B(a)2 exist.
By

g

0
B(a)2
= g

B(a)2 + B(a), g

0
B(a) = g

B(a) � B(a),

S is not changed, but g

B(a)2 now has B(a)6. Then we will decrease S in Case 4-6
below.

Case 4-3 B(a), �C(c), C(a), �C(b) and B(a)3 exist.
S is decreased by

g

0
B(a)3
= g

B(a)3 � C(c), g

0
�C(c) = g�C(c) + C(c).
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Figure 5: B(a)1, B(a)2, B(a)3, B(a)4, B(a)5, B(a)6

Case 4-4 B(a), �C(c), C(a), �C(b) and B(a)4 exist.
Because of the symmetry of b and c, we can decrease S as in Case 4-3.

Case 4-5 B(a), �C(c), C(a), �C(b) and B(a)5 exist.
S is decreased by

g

0
B(a)5
= g

B(a)5 � C(c), g

0
�C(c) = g�C(c) + C(c).

Case 4-6 B(a)6, �C(c), C(a) and �C(b) exist.
S is decreased by

g

0
B(a)6
= g

B(a)6 + C(a), g

0
C(a) = g

C(a) � C(a).

Now we look at Case 5.

Case 5 B(a), �C(c), C(a) and �B(c) exist.
As in Case 4 deg(c) � 2 by the existence of C(a). Then g�C(d) has additional edges connect-
ing to c. The possible cases are, 1) cc alone, 2) at least one ac, or 3) 2 bc’s. These three
cases are depicted in Figure 6.

Case 5-1 B(a), �C(c)1, C(a) and �B(c) exist.
S is decreased by

g

0
�C(c)1

= g�C(c)1 � B(c), g

0
�B(c) = g�B(c) + B(c).
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Figure 6: �C(c)1, �C(c)2, �C(c)3

Case 5-2 B(a), �C(c)2, C(a) and �B(c) exist.
S is decreased by

g

0
�C(c)2

= g�C(c)2 + B(a), g

0
B(a) = g

B(a) � B(a).

Case 5-3 B(a), �C(c)3, C(a) and �B(c) exist.
S is decreased by

g

0
�C(c)3

= g�C(c)3 + C(a), g

0
C(a) = g

C(a) � C(a).

We have eliminated patterns A, D and B. The remaining pattern is C.

Case 6 C exists.
Suppose that C(a) exists. In the absence of ±A, ±D and ±B and the pair (C(a),�C(a)), the
excess of bc can not be canceled. Hence this case is impossible.

We have now eliminated all the patterns. We now review the moves we needed to decrease
S . Except for Case 3-1, all the moves were exchanges of edges between two graphs, which
correspond to moves of degree two. In Case 3-1 we needed a move of degree three. Hence
max

b2NA MD(A
b

)  3. Together with (13) we have max
b2NA MD(A

b

) = 3.

II. Proof of MC(A) = 5.
Next we show MC(A) = 5. As discussed above, our argument before Case 3-2 applies also to

the higher Lawrence lifting A(N). b’s can be di↵erent in di↵erent layers in (15). Therefore we need
to check Case 4 and Case 5 again for higher Lawrence lifting. The argument is actually simple.
In Case 4, we consider at most five patterns (at most five graphs) which consist of two B(a)’s,
�C(c), C(a) and �C(b), whose sum is the zero vector. This shows that a move of type at most
five decreases S in the Case 4 for A(N). In Case 5 we consider at most four patterns (at most four
graphs), whose sum is the zero vector. Hence a move of type at most four decreases S in the Case
5 for A(N). This proves MC(A)  5.

To establish the equality, we construct an indispensable move whose type is five. Let g1, . . . , g5
be graphs displayed in the upper row and let ĝ1, . . . , ĝ5 be graphs displayed in the lower row of
Figure 7. We show that

z = (z1, . . . , z5) = (g1, . . . , g5) � ( ĝ1, . . . , ĝ5)
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is an indispensable move A(5) by Proposition 1. First, zi, i = 1, . . . , 5, are patterns B or C and they
are indispensable moves for A. By the argument after Proposition 1 we can start from arbitrary
slice zk.
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Figure 7: Graphs g1 = g2, g3, g4, g5 and ĝ1 = ĝ2, ĝ3, ĝ4, ĝ5

We start with z3. Since edges aa, bb in z3 have to be canceled, we need z1 and z4. Since the
edge bc in z4 has to be canceled, we need z2. Also, since the edge ac in z1 has to be canceled we
need z5. Hence we need all slices and this proves that z is indispensable.

III. Proof of MD(A
b

) = 2 for b , (2, 2, 2).
Recall that only Case 3-1 needed a degree-three move. We show that this move is not needed

if b , (2, 2, 2), by a series of lemmas.
We write elements of the Graver basis by their positive part and their negative part, e.g., A =

A

+ � A

�. We only need to consider the condition on b such that we need degree-three moves to
decrease S for the case

S =
3X

i=1

|gi � ĝi|, ĝ1 = g1 � B(a), ĝ2 = g2 + C(c), ĝ3 = g3 � B(b) (17)

and b = Agi = A ĝi, i = 1, 2, 3. Note there is the symmetry of vertices a and b.
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Lemma 3. If degree-two moves do not decrease S in (17), then

ecc  g2 � C(c)�, ebc 6 g2 � C(c)�, eca 6 g2 � C(c)�.

Proof. Since the degree of vertex c of C

� is less than that of B(a)+ by one, the degree of vertex
c of g2 � C(c)� is greater than one. Then ecc  g2 � C(c)�, ebc  g2 � C(c)�, or eca  g2 � C(c)�.
If ebc  g2 � C(c)�, then S is decreased by the following exchange of edges:

g

0
2 = g2 + B(b), g

0
3 = g3 � B(b).

Hence ebc 6 g2 � C(c)�. We also have eca 6 g2 � C(c)� by the symmetry between a and b.

Lemma 4. If degree-two moves do not decrease S in (17), then

ebc  g1 � B(a)+, ebb 6 g1 � B(a)+, eab 6 g1 � B(a)+.

Proof. Since the degree of vertex b of B(a)+ is less than that of C(a)� by one, the degree
of vertex b of g1 � B(a)+ is greater than one. Then ebc  g1 � B(a)+, ebb  g1 � B(a)+, or
eab  g1 � B(a)+. If ebb  g1 � B(a)+, then S is decreased by the following exchange of edges:

g

0
1 = g1 � C(c), g

0
2 = g2 + C(c).

Similarly if eab  g1 � B(a)+, S is decreased by the following exchange of edges:

g

0
1 = g1 + B(b), g

0
3 = g3 � B(b).

By the symmetry of a and b, the following lemma also holds.

Lemma 5. If degree-two moves do not decrease S in (17), then

eca  g3 � B(b)+, eaa 6 g3 � B(b)+, eab 6 g3 � B(b)+.

Lemma 6. Suppose that degree-two moves do not decrease S in (17) and deg(a) � 3 or deg(b) � 3.
Then deg(c) � 3.

Proof. By symmetry let deg(a) � 3. By Lemma 5, in this case, 2eca  g3 � B(b)+. Hence
deg(c) � 3.

By this lemma we can assume that deg(c) � 3 if b , (2, 2, 2). Hence our proof is completed
by the following lemma.

Lemma 7. If deg(c) � 3, then S in (17) can be decreased by degree-two moves.

Proof. By Lemma 3, if deg(c) � 3, then 2ecc  g3 � B(b)+. Then the following series of
exchanges of edges decreases S :

g

0
2 = g2 � D(a), g

0
3 = g3 + D(a),

g

0
1 = g1 + C(a), g

0
2 = g2 � C(a),

g

0
2 = g2 + B(c), g

0
3 = g3 � B(c),

g

0
1 = g1 � A, g

0
2 = g2 + A.
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4. Complete bipartite graphs as base configurations

In this section we take incidence matrices A(I, J) of complete bipartite graphs KI,J as base
configurations and study the maximum Markov degree of the configurations defined by their fibers.
The fibers correspond to two-way transportation polytopes. In algebraic statistics, A(I, J) is the
design matrix specifying the row sums and the column sums of an I⇥ J two-way contingency table
and the N-th Lawrence lifting A(I, J)(N) is the design matrix for no-three-factor interaction model
for I ⇥ J ⇥ N three-way contingency tables.

A remarkable fact for the case of complete bipartite graphs is that the maximum Markov
degree is three irrespective of I and J as we show in Section 4.1. On the other hand the Markov
complexity grows with I and J. Lower bound for the Graver complexity has been obtained by
[4, 13]. In Section 4.2 we give a lower bound for the Markov complexity, which appears on the
right-hand side of (2) in our main theorem.

4.1. Markov degree for two-way transportation polytopes

In this section we prove that the Markov degree of configurations for two-way transportation
polytopes is at most three. As discussed in Section 1, recently this fact was proved by Domokos
and Joó [7] in a more general setting. However in this section we give a proof, which is a direct
extension of a proof in [19].

Let r 2 NI and c 2 NJ be two non-negative integer vectors with
PI

i=1 ri =
PJ

j=1 c j. The
two-way transportation polytope is the set of all non-negative matrices x = (xi j) whose row sum
vector is r and column sum vector is c. Let T

r,c be the set of integral matrices in the transportation
polytope. Then

T
r,c = FA(I,J),(r,c)

is the the (r, c)-fiber for the incidence matrix A(I, J) of the complete bipartite graph KI,J . We
regard an element in T

r,c as complete bipartite graph with non-negative integral weights on edges,
which is denoted by g = (g(i j) | (i, j) 2 [I] ⇥ [J]). Set e = (ei j) 2 NA(I, J)(r,c) arbitrarily. Then
an element of the corresponding fiber FA(I,J)(r,c),e can be identified with some multiset {g1, . . . , gN}
satisfying gk 2 T

r,c, k = 1, . . . ,N, and
P

k gk(i j) = ei j, (i, j) 2 [I] ⇥ [J]. Haase and Pa↵enholz [9]
studied the 3⇥ 3 transportation polytopes. When I = J and r = c = (1, . . . , 1)>, the corresponding
transportation polytope is the Birkho↵ polytope.

Theorem 4. The toric ideal associated with the transportation polytope is generated by binomials
of degree two and three, i.e., max(r,c)2NA(I,J) MD(A(I, J)(r,c)) = 3.

The rest of this subsection is devoted to the proof of Theorem 4. Our proof is a direct extension
of the proof for the Birkho↵ polytope in [19]. We modify the terminologies in [19] to be suitable
for our setting.

Definition 1. An I ⇥ J integer matrix g = (g(i j)) is a proper graph if g is an element of T
r,c. A

multiset {g1, . . . , gN} is proper if each gk, k = 1, . . . ,N, is a proper graph.

For two proper graphs g and ĝ, we call D
g, ĝ :=

P
i, j |g(i j) � ĝ(i j)| the size of di↵erences.



T. Koyama, M. Ogawa, A. Takemura / J. Alg. Stat., 6 (2015), 80-107 100

Definition 2. An I ⇥ J integer matrix g = (g(i j)) is an improper graph if g has the row sum r and
column sum c, and there exists a unique edge (i⇤, j⇤) 2 [I] ⇥ [J] such that

g(i⇤ j⇤) = �1, g(i j) � 0, 8(i, j) , (i⇤, j⇤).

We call g(i⇤ j⇤) an improper edge of g. A multiset {g1, . . . , gN} is improper if one of {g1, . . . , gN}
is an improper graph, the others are proper graphs, and

PN
k=1 gk(i j) � 0,8i, j.

Definition 3. An I ⇥ J integer matrix g = (g(i j)) is a graph with collision if g(i j) � 0,8i, j, the
column sum of g is c and there exists i⇤ 2 [I] such that

JX

j=1

g(i⇤ j) = ri⇤ + 1,
JX

j=1

g(i j)  ri + 1, 8i , i⇤.

In this case we also say that the graph g contains a collision or the vertex i⇤ collides in g.

We often denote a multiset {g1, . . . , gN} of I ⇥ J integer matrices by S if
PN

k=1 gk(i j) � 0,8i, j,
and each element gk,8k, is one of the graphs defined in Definitions 1–3. The multiset S is denoted
by P (resp. I) when S is proper (resp. improper) and we want to emphasize it.

We now introduce some operations. LetS = {g1, . . . , gN} be a multiset of graphs in Definitions
1–3. Consider a pair of distinct graphs in S, say gk1 = (gk1 (i j)) and gk2 = (gk2 (i j)). Fix i1, i2 2 [I]
and j⇤ 2 [J] arbitrarily and set the two matrices zk1 = (zk1 (i j)) and zk2 = (zk2 (i j)) as

zk1 (i j) =

8>>>>><
>>>>>:

+1, (i, j) = (i2, j⇤),
�1, (i, j) = (i1, j⇤),
0, otherwise,

zk2 (i j) =

8>>>>><
>>>>>:

+1, (i, j) = (i1, j⇤),
�1, (i, j) = (i2, j⇤),
0, otherwise.

The swap {k1, k2} : i1
j⇤$ i2 for S is an operation transforming S into another multiset S0 of

matrices defined by

S0 = (S \ {gk1 , gk2}) [ {gk1 + zk1 , gk2 + zk2}.

Note that the resulting S0 has the same sums of weights of each edge as the original S, although
the elements S0 may not be graphs in Definitions 1–3.

Let us consider n 2 N swaps on the same pair of graphs gk1 , gk2 2 S and denote them as

(z

(1)
k1
, z(1)

k2
), . . . , (z

(n)
k1
, z(n)

k2
).

Consider the following operation, which transforms a multiset S into another multiset S0 without
changing sums of weights of each edge:

S0 = (S \ {gk1 , gk2}) [ {gk1 +

nX

l=1

z

(l)
k1
, gk2 +

nX

l=1

z

(l)
k2
}.

We call this operation a swap operation among two graphs of S and denote it as S {k1,k2} ! S0 or
merely S ! S0. If both of S and S0 are proper, the operation is nothing but the move of degree
two.
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Lemma 8. Let S = {g1, . . . , gN} be a multiset of graphs without any improper edge and suppose
that the kth and the k0th graphs contain some collisions. If

PJ
j=1(gk(i j) + gk0(i j)) = 2ri for each

i 2 [I], we can resolve all the collisions by a swap operation among these two graphs.

Proof. We may assume gk(i j) = 0 or gk0(i j) = 0 for each i 2 [I], j 2 [J]. Let ḡk = (ḡk( j))
and ḡk0 = (ḡk0( j)) be the J-dimensional row vectors whose jth elements ḡk( j) and ḡk0( j) are the
multisets of symbols defined by

ḡk( j) := {1, . . . , 1|  {z  }
gk(1 j)

, . . . , I, . . . , I|  {z  }
gk(I j)

}, ḡk0( j) := {1, . . . , 1|  {z  }
gk0 (1 j)

, . . . , I, . . . , I|  {z  }
gk0 (I j)

}, j 2 [J].

Suppose that the vertex i 2 [I] collides in gk. This means that the symbol i appears (ri+1) times in
ḡk and (ri � 1) times in ḡk0 . To resolve the collision of i, we temporarily assign the di↵erent labels
to vertices as follows. First, we assign i1, . . . , iri�1 to (ri � 1) i’s in each of ḡk and ḡk0 . Second,
for each vertex not colliding in these two graphs, say i0, we assign i01, . . . , i

0
ri0 to ri0 i0’s in each of

ḡk and ḡk0 . Finally, for each colliding vertex di↵erent from i, say i00, we assign i001 , . . . , i
00
ri00�1 to

(ri00 � 1) i00’s in each graph and î001 , î
00
2 to the remaining two i00’s. At this point, each symbol except

i appears once in each of ḡk and ḡk0 .
Let s =

PJ
j=1 c j and define the 2 ⇥ s matrix D = (dK↵) satisfying the following equations as

multisets:

{dK↵, . . . , dK(↵+c j�1)} = ḡK( j), K = k, k0, ↵ =
j�1X

m=1

cm + 1, j = 1, . . . , J.

Let G be a graph on the vertex set [s] defined as follows: a directed edge (↵, �) exists for ↵, � 2 [s]
if and only if dk� = dk0↵. The graph G consists of disjoint directed paths and cycles. Then, there ex-
ists a path starting from a vertex � 2 [s] with dk� = i. This path defines the swap operation among
gk and gk0 with the original labels of vertices, which resolves the collision of i without causing any
new collision. Repeatedly applying this discussion, we obtain the sequence of the swap operations
resolving collisions among the two graphs. Combining them into one swap operation, we obtain
the desired swap operation among gk and gk0 .

Lemma 9. Let I = {g1, . . . , gN} be an improper multiset with gk(i j) = �1. Then, by a swap
operation among two graphs, I can be transformed to a proper multiset.

Proof. Choose i0 2 [I] with i0 , i and gk(i0 j) > 0. Since
PN

l=1 gl(i j) � 0, there exists k0 2 [N]

with gk0(i j) > 0. Perform a swap {k, k0} : i
j$ i0 to resolve the improper element. Then, i collides

in gk0 and i0 collides in gk. Since i (resp. i0) appears 2ri (resp. 2ri0) times in the first two graphs
in total, we can resolve these collisions by Lemma 8 by a swap operation among these two graph.
Combining the process, we obtain a swap operation among two graphs transforming I to a proper
multiset.

Definition 4. We call the pair of two graphs gk and gk0 in Lemma 9 a resolvable pair and denote
it as [kim, kpr].
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Definition 5. A swap operation among two graphs labeled by A = {k, k0} in I A ! I0 is compat-
ible with improper multisets I and I0 if there exists a common resolvable pair [kim, kpr] of I and
I0 such that A \ {kim, kpr} , ;.

Lemma 10. Let P = {g1, . . . , gN}, P̂ = { ĝ1, . . . , ĝN} be two proper multisets in FA(I,J)(r,c),e and
suppose gk , ĝk0 for some k, k0. Then, their size D

gk , ĝk0 of di↵erences can be decreased by a swap
operation among two graphs of P, such that if the resulting multiset is not proper, it is improper
and its improper graph and the kth graph form a resolvable pair.

Proof. Since gk , ĝk0 , there exist i 2 [I] and j, j0 2 [J] satisfying gk(i j) < ĝk0(i j) and
gk(i j0) > ĝk0(i j0). Since P and P0 belong to FA(I,J)(r,c),e, there exists k00 2 [N] with k00 , k and
gk00(i j) > 0. Choose i0 2 [I] satisfying i0 , i and gk(i0 j) > 0 and consider a swap operation

{k, k00} : i0
j$ i

j0$ i0 to P. This operation decreases D
gk , ĝk0 . When gk00(i0 j0) > 0, the resulting

multiset is proper. Otherwise, the resulting multiset is improper where [k00, k] forms a resolvable
pair. This proves the claim.

Lemma 11. Let I = {g1, . . . , gN} be an improper multiset and P̂ = { ĝ1, . . . , ĝN} be a proper
multiset with the same sums e of weights of edges. Consider the k0th graph ĝk0 of P̂ and choose
any resolvable pair [kim, kpr] of I. Then, by at most two swap operations among two graphs of
I, we can (i) decrease the size D

gkpr , ĝk0 of di↵erences, or (ii) make I proper without changing
gkpr . Furthermore, if the resulting multiset is not proper, then it is an improper multiset with a
resolvable pair consisting of its improper graph and the kprth graph, and each intermediate swap
operation between two consecutive improper multisets is compatible with them.

Proof. We may suppose gkim(i j) = �1 and gkpr (i j) > 0 for some i 2 [I] and j 2 [J]. In the cases
below, when a resulting multiset is improper, [kim, kpr] will be a resolvable pair.

Case 1 ĝk0(i j) � gkpr (i j).
Since

PN
l=1 gl(i j) =

PN
l=1 ĝl(i j) > gkpr (i j), there exists k 2 [N] such that k , kim, kpr and

gk(i j) > 0. Then, [kim, k] is a resolvable pair and I can be transformed to a proper multiset
without changing gkpr by Lemma 9. This corresponds to (ii) of the lemma and summarized

as I {kim,k} ! P.

Case 2 ĝk0(i j) < gkpr (i j).
Since

PJ
t=1 ĝk0(it) =

PJ
t=1 ĝkpr (it), there exists j0 2 [J] with ĝk0(i j0) > gkpr (i j0). Fix some

i0 2 [I] with gkpr (i0 j0) > ĝk0(i0 j0) arbitrarily.

Case 2-1 gkim(i j0) > 0.

We perform the swap operations {kpr, kim} : i
j$ i0 and {kim, kpr} : i0

j0$ i to I at the
same time, which decrease D

gkpr , ĝk0 . If gkim(i0 j) > 0, the resulting multiset is proper.
Otherwise, the resulting multiset is improper. This corresponds to (i) of the lemma and

is summarized as I
{kpr,kim} ! P or I

{kpr,kim} ! I.
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Case 2-2 gkim(i j0) = 0.
Since ĝk0(i j0) > gkpr (i j0), there exists k00 2 [N] such that k00 , kpr, kim and ĝk0(i j0) > 0.

Fix i00 2 [I] with xi00kim > 0 arbitrarily. Consider the swap {k00, kim} : i
j0$ i00. Then, i

collides in the kimth graph and i00 collides in the k00th graph. By the similar argument
as the proof of Lemma 8, we can resolve these collisions by a swap operation among
the kimth and the k00th graphs, which leaves gkim(i j) = �1 and makes gkim(i j0) positive.
These operation can be done by a singe swap operation among the two graphs. After
that, this case reduces to Case 2-1. Together with the subsequent operation of Case

2-1, Case 2-2 is summarized as I {kim,k00} ! I
{kpr,kim} ! P or I {kim,k00} ! I

{kpr,kim} ! I.

We now give a proof of Theorem 4 by the similar argument as [19]. Let P and P̂ be two proper
multisets belonging to the same fiber FA(I,J)(r,c),e. Choose any kth graph gk of P and any k0th graph
ĝk0 of P̂ with gk , ĝk0 . Thanks to Lemmas 10 and 11, allowing some intermediate improper
multisets, we can make gk identical with ĝk0 by a sequence of swap operations among two graphs
of P. We throw away this common graph from the two multisets and repeat the procedure. In
the end, P can be fully transformed to P̂. Let us decompose the whole process of transforming
P to P̂ into segments that consist of transformations from a proper multiset to another proper
multiset with improper intermediate steps. One segment is depicted as P1  ! I1  ! · · ·  !
Im  ! Pm where each  ! denotes a swap operation among two graphs in Lemmas 10 or 11.
Then, for any consecutive multisets Il and Il+1, l = 1, . . . ,m � 1, there exist proper multisets
Pl,P0l , l = 1, . . . ,m � 1, satisfying

Pl  ! Il  ! Il+1  ! P0l+1,

P0l  ! Il  ! Pl.

By the compatibility of the swap operation in Il  ! Il+1, Pl can be transformed to P0l+1 by a
swap operation among three graphs. Since P0l  ! Il and Il  ! Pl involve a common improper
graph, P0l can also be transformed to Pl by a swap operation among three graphs. Therefore, the
process from P1 to Pm is realized by swap operations among three graphs as

This proves Theorem 4.

4.2. Lower bound of Markov complexity for complete bipartite graphs

In this section we give a lower bound for MC(A(I, J)), 3  I  J.

Proposition 2. For 3  I  J,

MC(A(I, J)) � (I � 2)(J2 � 1)/4 + J � 1. (18)
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For the rest of this subsection we give a proof of Proposition 2. Let d = bJ/2c. We display
I ⇥ J two-dimensional slice as follows:

1 · · · d (r) J � d + 1 · · · J
1 z1,1 · · · z1,d (z1,r) z1,J�d+1 · · · z1,J
...
...

...
I zI,1 · · · zI,d (zI,r) zI,J�d+1 · · · zI,J

, (19)

where, r = d + 1 if J is odd and r does not exist if J is even. We define z(i1, i2; j1, , j2) as the
following I ⇥ J table:

j1 j2
i1 +1 �1
i2 �1 +1

, (20)

where other entries are 0.
We give an indispensable move z

⇤ = {z⇤(i, j, k)} of for A(I, J)(N), where N = (I�2)(J�d)d+2d
is the type of z

⇤. The I ⇥ J slices of z

⇤ as follows:

z(1, I; j, J � d + j), j = 1, · · · , d,
z(I � 1, I; J � d + j + 1, j), j = 1, · · · , d � 1,
z(I � 1, I; j + 1, j), j = d, (r),
z(i, i + 1; j + 1, j) ⇥ j, i = 1, . . . , I � 2, j = 1, . . . , d,
z(i, i + 1; r + 1, r) ⇥ d, i = 1, . . . I � 2,
z(i, i + 1; J � j + 1, J � j) ⇥ j, i = 1, . . . , I � 2, j = 1, . . . , d � 1.

It is easy checked that
PN

k=1 z⇤(i, j, k) = 0 for all i, j and z

⇤ is a move for A(I, J)(N). Also all slices
of z

⇤ are indispensable. Therefore, if we can show that z

⇤ is indispensable move, then

MC(A(I, J)) � (I � 2)(J � d)d + 2d � (I � 2)(J2 � 1)/4 + J � 1.

Now we again use the argument after Proposition 1. We start with the slice z(1, I; 1, J �d+1).
Since the (sum of) (I, 1)-element is �1, we need a slice whose (I, 1)-element is +1. Therefore we
need z(I�1, I; J�d+2, 1). Since the sum of (I, J�d+2)-elements is �1, we need z(1, I; 2, J�d+2).
In the same way, we find that z(1, I; j, J � d + j), j = 1, . . . , d, z(I � 1, I; J � d + j + 1, j),
j = 1, . . . , d � 1, and z(I � 1, I; j + 1, j), j = d, r, are needed.

The sum of slices so far is as follows:

1 · · · d (r) J � d + 1 · · · J
1 +1 · · · +1 (0) �1 · · · �1

I � 1 �1 · · · �1 (0) +1 · · · +1
.

Since the sum of (I�1, 1)-elements is �1, we need z(I�2, I�1; 2, 1). Since the sum of (I�1, 2)-
elements is �2, we need z(I�2, I�1; 3, 2)⇥2. In the same way, we find that z(I�2, I�1; j+1, j)⇥ j,
j = 1, . . . , r, and z(I � 2, I � 1; J � j + 1, J � j) ⇥ j, j = 1, . . . , d � 1, are needed.
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The sum of slices so far is as follows:

1 · · · d (r) J � d + 1 · · · J
1 +1 · · · +1 (0) �1 · · · �1

I � 2 �1 · · · �1 (0) +1 · · · +1
.

In the way, we find that z(i, i + 1, j + 1, j) ⇥ j (i = 1, . . . , I � 3, j = 1, . . . , r) and z(i, i + 1; J �
j + 1, J � j) ⇥ j (i = 1, . . . , I � 3, j = 1, . . . , d � 1) are needed. Hence all slices are needed for
cancellation and this implies that z

⇤ is an indispensable move.

Remark 3. There are indispensable moves whose types are larger than the one in (18) for specific
I and J. One example is the following move z of 5 ⇥ 5 ⇥ 32 table for the case I = J = 5. Each
5 ⇥ 5 slice is a move of degree two of the form z(i1, i2; j1, j2). We now list these 32 slices. In the
list, �(i1, i2; j1, j2) denotes �z(i1, i2; j1, j2) = z(i1, i2; j2, j1).

slice 1 2 3 4 5 6 7 8
move (1,5;1,5) �(1,2;1,2) �(1,3;2,3) �(1,2;3,4) �(1,3;4,5) �(2,3;1,3) (2,4;2,4) �(2,4;3,5)
slice 9 10 11 12 13 14 15 16
move �(2,4;3,5) (2,5;4,5) (2,5;4,5) �(3,4;1,2) �(3,5;2,4) �(3,5;2,4) (3,5;3,5) (3,5;3,5)
slice 17 18 19 20 21 22 23 24
move �(3,4;4,5) �(3,4;4,5) �(3,4;4,5) �(4,5;1,3) (4,5;2,5) (4,5;2,5) �(4,5;3,4) �(4,5;3,4)
slice 25 26 27 28 29 30 31 32
move �(4,5;3,4) �(4,5;4,5) �(4,5;4,5) �(4,5;4,5) �(4,5;4,5) �(4,5;4,5) �(4,5;4,5) �(4,5;4,5)

• Since (1, 1)-element of slice 1 is +1, we need slice 2.
• Since the sum of (1, 2)-elements from slice 1 and 2 is +1, we need slice 3.
. . .

• Since the sum of (2, 2)-elements from slice 1 through slice 6 is �1, we need slice 7.
• Since the sum of (2, 3)-elements from slice 1 through slice 7 is +2, we need slice 7 and 8.
. . .

• Since the sum of (4, 4)-elements from slice 1 through slice 25 is +7, we need slice 26 through
slice 32.

Therefore, this move is indispensable.

Remark 4. The case of I = 2 is relatively easy with the known explicit Graver basis, as already
discussed in Section 4 of [6]. The question of when the equality holds in (18) seems to be di�cult,
partly because currently there is no algorithm to compute the Markov complexity.

5. Discussion

In this paper we investigated a series of configurations A
b

defined by fibers of a given base
configuration A. We proved that the maximum Markov degree of the configurations is bounded



REFERENCES 106

from above by the Markov complexity of A. From our examples, the equality between the maxi-
mum Markov degree and the Markov complexity seems to hold only in special simple cases. As
discussed after the statement of Theorem 1, the equality holds because the set of fibers for A

b

is
a subset of fibers of the higher Lawrence lifting A(N) of A. The strict inequality suggests that the
former is a small subset of the latter. In particular for the case of incidence matrix complete bipar-
tite graphs Km,n, the maximum Markov degree for Ab is three independently of m and n, whereas
the Markov complexity grows at least polynomially in m and n as shown in Section 4.2. Hence
the discrepancy is large for this case.

Another interesting topic to investigate is the dependence of the Markov degree of A
b

on b.
The results of Haase and Pa↵enholz [9] suggest that for generic b, the Markov degree of A

b

may
be smaller than the maximum Markov degree. The result of Theorem 3 on the specific b = (2, 2, 2)
suggests that this may a general phenomenon.
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[7] M. Domokos and D. Joó. On the equations and classification of toric quiver varieties.
arXiv:1402.5096v1, 2014.

[8] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics, volume 39 of
Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2009.
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