Yeni Periton Diyaliz Solüsyonları New Peritoneal Dialysis Solutions

Bülent Tokgöz
Erciyes Üniversitesi Tıp Fakültesi, Nefroloji BD, Kayseri

Periton diyalizi (PD), son dönem böbrek yetmezligit tedavisinde önemli bir tedavi seçeneğidir. Tedaviye yeni başlanan hastalarda ilk yilda, yerine göre, hemodiyalizden daha üstün yönleri vardır (1-3). Son 30 yılda elde edilen bütün olumlu gelişmelere rağmen, teknik komplikasyon oranı PD hastalarında hâlâ yüksektir.

Diyaliz tedavisi, yarı geçirgen bir membran aracllığıly kan ve diyaliz solüsyonu arasında sıvı-solüt değişimi esasına dayanır. Yarı geçirgen membran ve diyaliz solüsyonu tedavinin en önemli bileşenleridir. Periton diyalizi tedavisinde hastanın kendi periton dokusu yarı geçirgen membran görevini üstlenir. Tedavinin uzun dönemde başarılı olabilmesi için periton membranının yapısal ve fonksiyonel özelliklerinin korumması gerekir. Bununla beraber, standart PD solüsyonlarının kullanıldığı bir tedavide, süre uzadıkça periton membranının yapısal ve fonksiyonel özelliklerinin değişebildiği gözlenmiştir (4). Meydana gelen yapısal değişiklikler arasında interstisyel fibrozis, mezotel ve damar duvarı bazal membranlarında reduplikasyon, damar duvarı media tabakasında hyalinizasyon ve neoanjiyogenezis sayılabilir (4). Yapısal değişikliklerin, bugün için bilinen, en belirgin klinik yansımast, ultrafiltrasyon kapasitesinde sonradan ortaya çıkan azalmadır. Periton membranında meydana gelen değişikliklerin nedeni olarak en çok standart periton diyalizi solüsyonlarınn biyouyumsuz özellikleri suçlanmıştır.

Standart PD Solüsyonlari ve Biyouyumluluk

Standart PD solüsyonlarının birçok biyouyumsuz özelliği vardır. Standart solüsyonlarla tedavi süresi uzadıkça periton dokusunda ortaya çıkan

[^0]yapısal değişikliklerin diyabete özgü lezyonları andırması üzerine dikkatler ilk olarak bu solüsyonların yüksek glükoz içeriğine yönelmiştir. Bu düşünceyle yapılan araştırmalarda, endotel ve mezotel hücrelerinin in vitro ortamda yüksek glükozlu solüsyonlara maruz bırakılmasının, vasküler endotelyal büyüme faktörü (VEBF) (5) ve transforme edici büyüme faktörü β (TBF- β) $(6,7)$ ekspresyonunu artırdığ1 bulunmuştur. Hem in vitro çalışmalar hem de hayvan deneyleri, PD solüsyonlarının yüksek glükoz içeriğinin mezotel hücreleri üzerine toksik etkide bulunduğunu göstermiştir $(8,9)$. Standart solüsyonların bir diğer biyouyumsuz özelliği, üretim sürecinde oluşan yüksek oranda glükoz yıkım ürünleridir (GYÜ) (10). Glükoz yıkım ürünleri 1 sı sterilizasyonu sırasında glükozun indirgenmesiyle oluşur ve in vitro deneylerde bunların hücre proliferasyonunu engellediği, fibroblast, makrofaj ve mezotel hücrelerinde nekroza yol açtığı gösterilmiştir $(11,12)$. Klinik araştırmalarda, glükoz yıkım ürünlerinin düşük pH değerleriyle birlikte hastalarda infüzyon ağrıS1 ve ultrafiltrasyon kapasitesinde azalmaya yol açabileceği tespit edilmiştir (13). Glükoz yıkım ürünleri, non-enzimatik tepkimelerle, ileri glikozilasyon son-ürünlerine dönüşmeye eğilimlidir $(14,15)$ ve standart PD solüsyonlarının yüksek glükoz içeriğinin uzun vadede periton dokusunda ileri glikozilasyon son-ürünlerinin (İGÜ) birikimine yol açabildiği gösterilmiştir (16,17). PD solüsyonlarının yüksek glükoz içeriği, hiperglisemi, hiperinsülinemi ve obezite gibi metabolik sorunlara da neden olabilir $(18,19)$.

Standart PD solüsyonlarının bir diğer biyouyumsuz özelliği yüksek laktat oranları ve düşük pH değerleridir ($\mathrm{pH} \sim 5.2-5.5$) (Tablo I). Düşük pH değerlerinin amacı sterilizasyon sırasında solüsyon içeriğindeki glükozun karamelizasyonunu önlemektedir. In vitro çalışmalar, en fazla toksik etkinin, düşük pH

Tablo I. Standart PD solüsyonlarının uzun süreli tedavide periton membranını olumsuz etkilemesi muhtemel özellikleri $(21,22)$

Standart PD Solüsyonlarının Biyouyumsuz Özellikleri

Asit pH (~ 5.2-5.5)
Yüksek konsantrasyonda glükoz
Yüksek konsantrasyonda glükoz yıkım ürünleri (GYÜ)
Yüksek konsantrasyonda laktat
Yüksek osmolarite
Illeri glikozilasyon son-ürünü (IGÜ) oluşturma potansiyeli
değerlerinin yüksek laktat içeriğiyle birleştiğinde ortaya çiktığına işaret etmektedir (20).

Bir PD Solïsyonundan Beklenen Nedir?

Bir PD solüsyonundan beklenen, yeterli klirens ve yeterli ultrafiltrasyon sağlamasının yanı sıra üremik toksinleri uzaklaşırırken eksik elektrolitleri yerine koyması, metabolik komplikasyona yol açmaksızın nutrisyonel ihtiyaçları karşılaması, pH değerinin fizyolojik aralıkta, ozmolaritesinin plazma ozmolaritesine yakın olması ve periton membranınının yapısal ve fonksiyonel bütünlüğünü korumasıdır. Bugün için sözü edilen özelliklere sahip bir solüsyon geliştirilebilmiş değildir. Bununla beraber, PD solüsyonlarının biyouyumluluğunu artırma çabaları, daha biyouyumlu yeni solüsyonların geliştirilmesi sonucuna ulaşmıştır. Yeni PD solüsyonları glükoz içeren ve içermeyen solüsyonlar olmak üzere iki ana başlık altında toplanabilir (Tablo II).

Glükoz İçermeyen Yeni PD Solüsyonlari
 İkodekstrin İçeren PD Solüsyonu (Extraneal ${ }^{\circledR}$)

İkodekstrin, nişastanın hidroliziyle elde edilen bir glükoz polimeridir. İkodekstrin polimerleri, ağırlıklı olarak ' $\pm 1-4$ ' ve kısmen ' $\pm 1-6$ ' glükozid bağlarıyla birbirine bağlı glükoz ünitelerinden oluşur (24). Ortalama 16.200 Da molekül ağırlığına sahiptir ve klinik kullanımda $\% 7.5^{\prime}$ lik solüsyonlar halinde bulunmaktadır. $\% 7.5^{\prime}$ lik ikodekstrin solüsyonu izoozmolardır ($284 \mathrm{mosmol} / \mathrm{L}$) ve ultrafiltrasyon, kolloid yapının sağladığı ozmoz etkisiyle gerçekleşir. İkodekstrinin sıvı çekme hızı yavaştır ve döngü süresi uzadıkça ultrafiltrasyon yapıcı etkisi daha iyi ortaya çıkar (25). Bu yüzden sürekli ayaktan periton diyalizi yapan hastalarda uzun gece döngüsünde ve aletli periton diyalizi yapan hastalarda gündüz döngüsünde kullanılır. Ayrıca periton damar yüzey alanı arttıkça da ikodekstrinin ultrafiltrasyon yapıcı etkisi güçlenir (13). Bu sebeple damar yüzey alanı genişliği nedeniyle ultrafiltrasyon yetmezliği yaşanan hastalarda ikodekstrin özellikle faydalıdır.

İkodekstrin, absorbe edilmesi durumunda, plazmada polimerler, disakkaridler, maltoz ve nihai olarak glükoza indirgenir (26). $\% 7.5^{\prime}$ lik laktat tamponlu ikodekstrin solüsyonları, dolaşımda maltoz yüklenmesine yol açmamak için 24 saatte en fazla bir döngüde kullanılmalıdır $(27,28)$.

İkodekstrin solüsyonunun, standart glükoz bazlı solüsyonlara kıyasla periton membranıyla daha biyouyumlu olduğu in vitro ve ex vivo çalışmalarla gösterilmiştir (29-32). \%7.5’lik ikodekstrin solüsyonu 8-12 saatlik döngüde $\% 3.86$ 'lık glükoz solüsyonunun sağladığı miktara eşdeğer ya da daha fazla ultrafiltrasyon sağlar. İkodekstrin solüsyonunu düzenli kullanan hastalarda volüm kontrolünün kolaylaştığı,

Tablo II. Klinik kullanıma sunulmuş yeni PD solüsyonları (23)			
	Ozmotik Ajan	Tampon Molekül	$\mathbf{p H}$
Balance ${ }^{\circledR}$	Glükoz	Laktat	7.0
Gambrosol Trio ${ }^{\circledR}$	Glükoz	Laktat	6.5
Physioneal ${ }^{\circledR}$	Glükoz	Bikarbonat + Laktat	$7.0-7.4$
BicaVera ${ }^{\circledR}$	Glükoz	Bikarbonat	~ 7.4
Extranea ${ }^{\circledR}$	İkodekstrin	Laktat	$5.0-6.0$
Nutrinea ${ }^{\circledR}$		Lakinoasitler	

kan basıncında düşmeler, kullamılan antihipertansif ilaç sayısının azalmalar elde edildiği, lipid profilinin iyileştiği ve teknik sağkalım süresinin uzadığına dair veriler vardır (33-36). Öte yandan ikodekstrin kullanan hastalarda sağkalımın uzadığını gösteren bir veri henüz mevcut değildir. İkodekstrin solüsyonlarının, peritonit ve yüksek geçirgenliğe bağlı olarak ultrafiltrasyon miktarının azaldığı durumlarda da etkili olduğu gösterilmiştir (37-40).

Aminoasit İçeren PD Solüsyonu (Nutrineal ${ }^{\circledR}$)

Ozmotik ajan olarak aminoasit içerir. Aminoasitli PD solüsyonuyla elde edilen ultrafiltrasyon hacmi nispeten azdır. \%1.1’lik aminoasitli solüsyon kullanılarak $\% 1.5$ lik glükoz solüsyonunun yaptığına eşdeğer hacimde ultrafiltrasyon miktarma ancak erişilebilir. Solüsyon içeriğinde bulunan aminoasitler hem ozmotik etki sağlar hem de beslenmesi yetersiz hastalarda fosfat içermeyen nitrojen kaynağı olarak kullanılır. PD hastalarında sik görülen malnütrisyonun patogenezi net olarak anlasslamamıştır, diyalizatla protein kaybı ve nitrojenden fakir beslenme önemli sebeplerdir $(41,42)$. Aminoasitli PD solüsyonu aşırı nitrojen yüklenmesine yol açmamak için günde tek kez uygulanır ve ana öğünlere denk gelen saatlerde verilmesinin teorik olarak daha faydalı olması beklenir. Aminoasitli PD solüsyonu tampon molekül olarak laktat içerir; ancak standart solüsyonlara göre daha az asidik yapıdadır (pH 6.2). Aminoasitli PD solüsyonu kullanımının plazma protein düzeylerinde iyileşme ve antropometrik ölcümlerde düzelme sağladığını gösteren kısa süreli klinik araştırmalar vardır (41,42). Aminoasitli PD solüsyonunun, standart solüsyonlara kıyasla daha biyouyumlu olduğu kanıtlanmıştır (43). Öte yandan, solüsyon içeriğinde bulunan aminoasitlerin metabolizması, fazladan üre ve asit açığa çıkması anlamına gelir ve sonuçta serum üre düzeyleri artarken, bikarbonat düzeyinin azalmasına yol açabilir. Serum üre düzeyinin fazla yükselmemesi ve asidoz gelişmemesi için \%1.1'lik aminoasitli PD solüsyonunun tercihen günde tek (ya da en fazla iki) döngüyle sınırlı tutulması temkinli bir yaklaşımdır. Bu hastalarda asidoz kontrolü icin oral bikarbonat desteğinin faydalı olduğu görülmüştür (28).

Glükoz İçeren Yeni PD Solüsyonları

Glükoz içeren yeni solüsyonların ortak yanı, GYÜ düzeylerinin düşük olmasıdır. Ek olarak bu so-
lüsyonlar eskilerine oranla daha az asidik, nötral veya fizyolojik pH değerlerine sahiptir. İnsan vücudunda asit-baz dengesinin doğal tampon molekülü bikarbonat olmasına rağmen, standart PD solüsyonlarında tampon molekül olarak laktat kullanılmıştır. Bunun en önemli nedeni, is1 sterilizasyonu esnasında oluşan kalsiyum karbonatın çökelmesi sorununun başlangıçta bir türlü çözülememiş olmasıdır. Daha sonra geliştirilen çok odacıklı torbalar, isı sterilizasyonu sırasında bikarbonat ve kalsiyumun birbirinden uzak tutulmasına imkân tanımıştır. Torbadaki odacıklar kullanımdan hemen önce birleştirildiğinde elde edilen nihai solüsyon daha az asidik, nötral ya da fizyolojik pH değerlerine gelmektedir ve daha az glükoz yıkım ürünü içermektedir (44).

GYÜ orant azaltılmıs glïkoz solüsyonları:

- Gambrosol Trio ${ }^{\circledR}$ - Tampon molekül laktattır. Hafif asidik yapıdadır, pH değeri 6-6.5 arasındadır. Torbaları 3 odacıklıdır, nihai solüsyonun glükoz içeriği, iki veya üç torbanın birleşmesine bağlı olarak değiştirilebilmektedir. GYÜ oranı düşüktür.
- Balance ${ }^{\circledR}$ - Torbaları iki odacıklıdır. Tampon molekül laktattır ve pH değeri 7'dir.

GYÜ orant azaltılmıs ve bikarbonat içeren glükoz solüsyonlarz:

- Physioneal ${ }^{\circledR}$ - GYÜ oranı düşüktür. Tampon molekül olarak hem bikarbonat ($25 \mathrm{mmol} / \mathrm{L}$) hem de laktat ($15 \mathrm{mmol} / \mathrm{L}$) kullanılmıştır. Odacıklar birleştiğinde oluşan solüsyon fizyolojik konsantrasyonda bikarbonat içerir ve pH değeri 7.4 'tür.
- BicaVera ${ }^{\circledR}$ - GYÜ oranı düşüktür. Tampon molekül olarak tek başına bikarbonat kullanılmıştır. Bikarbonat konsantrasyonu $34 \mathrm{mmol} / \mathrm{L}$ ve pH değeri yaklaşık 7.4'tür.

Birçok araştırmanın sonuçları glükoz içeren yeni PD solüsyonlarının daha biyouyumlu olduğunu göstermektedir. Mezotel hücre kütlesinin bir göstergesi olarak kullanılan diyalizat kanser antijeni 125 (CA 125) içeriği bu solüsyonların kullanıldığı hastalarda yükselmiştir $(13,45,46)$. Yine bu solüsyonları kullanan hastalarda, periton membraninda inflamasyonun bir belirteci olan diyalizat hyaluronan düzeyinin düştüğü gözlenmiştir (13). Hem GYÜ düşük hafif asidik laktat bazlı solüsyonlarını kullanan hastalar, hem de bikarbonat bazlı solüsyonları kullanan hastalar daha az infüzyon ağrısı tarif etmişlerdir $(13,47)$.

Bikarbonat/laktat bazlı solüsyonlar kullanarak yapılan altı ay süreli randomize bir çalışmada kontrollere kıyasla diyalizat IL-6, VEBF ve TBF- \pm düzeylerinin azaldığı bulunmuştur (48). Başka bir çalışmada, bikarbonat içeren solüsyonların, periton geçirgenliğinde değişme olmaksızın ultrafitrasyonda düzelme sağlarken ve asidoz kontrolünü kolaylaştırdığı bulunmuştur (49).

Saf bikarbonat veya bikarbonat/laktat bazlı PD solüsyonlarının, laktat bazlı solüsyonlardan daha biyouyumlu olduğu gösteren in vivo ve ex vivo çalışmalar mevcuttur $(50,51)$.

Sonuç

Bugün için, PD tedavisinde en iyi sonuçlara kombine solüsyon kullanımıyla ulaşılabileceği düşünülmektedir. Yakın zamanda sonuçlanan bir çalışmada, 30 haftalık kombinasyon tedavisiyle diyalizat CA125 düzeyinin daha iyi korunduğu, ancak periton geçirgenliğinde hafif artış olduğu gözlenmiştir (52).

Ozmotik ajan olarak gliserol kullanılan yeni PD solüsyonu çalışmaları devam etmektedir (43). Yapılan ilk çalışmalarda, gliserol (\%1.4) ve nispeten düsük oranda ($\% 0.6$) aminoasit içeren yeni solüsyonların iyi tolere edildiği ve ultrafiltasyon kapasitesinin \%2.27 glükoz solüsyonuyla benzer olduğu gözlenmistir (53).

Yeni PD solüsyonlarının yaygınlaşmasının önündeki en önemli engel tedavi maliyetine getirdikleri ek yüktür. Öte yandan, yeni PD solüsyonlarının hasta sağkalımına etkilerini de inceleyen, kapsamlı ve uzun süreli araştırmalara gereksinim vardır.

Kaynaklar

1. Thodis E, Passadakis P, Vargemezis V, et al. Peritoneal dialysis: better than, equal to, or worse than hemodialysis? Perit Dial Int 2001;21(1):25-35.
2. Fenton SS, Schaubel DE, Desmeule's M, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997;30(3):334-42.
3. Maiorca R, Cancarini G, Zubani R, et al. CAPD viability: a long-term comparison with hemodialysis. Perit Dial Int 1996;16:276-87.
4. De Vriese AS; Mortier S, Lameire NH. What happens to peritoneal membrane in long-term peritoneal dialysis? Perit Dial Int 2001;21(Suppl 3):S35-S40.
5. Zweers MM, de Waart DR, Smit W, et al. Growth factors VEGF and TGF-b1 in peritoneal dialysis. J Lab Clin Med 1999; 134:124-132.
6. Wang T, Chen YG, Ye RG, et al. Effect of glucose on TGFbetal expression in peritoneal mesothelial cells. Adv Perit Dial 1995;11:7-10.
Kang DH, Hong YS, Lim HJ, et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-betal of human peritoneal mesothelial cells:
effect of cytokine costimulation. Perit Dial Int 1999;19:221-30. 37.
7. Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in-vitro. Kidney Int 1992;41:1280-1285.
8. Gotloib L, Waisbrut V, Shostak A, et al. Acute and long-term changes observed in imprints of mouse mesothelium exposed to glucose enriched, lactate buffered dialysis solution. Nephron 1995;70:466-477.
9. Witowski J, Jorres A, Korybalska K et al. Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl 2003;84:S148-S151.
10. Jörres A, Bender TO, Witowski J. Glucose degradation products and the peritoneal mesothelium. Perit Dial Int 2000;20(Suppl 5):S19-22.
11. Holmes CJ, Shockley TR. Strategies to reduce glucose exposure in peritoneal dialysis patients. Perit Dial Int 2000;20(Suppl 2):S37-41.
12. Rippe B, Simonsen O, Heimbürger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 2001;59(1):348-57.
13. Honda K, Nitta K, Horita S, et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultrafiltration. Nephrol Dial Transplant 1999;14:1541-9.
14. Wieslander A, Linden T, Musi B, et al. Biological significance of reducing glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 2000;20(Suppl 5):S23-7.
15. Nakayama M, Kawaguchi Y, Yamada K, et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 1997;51(1):182-6.
16. Pischetsreider M. Chemistry of glucose and biochemical pathways of biological interest. Perit Dial Int 2000;20(Suppl 2):S26-S30.
17. Grodstein GP, Blumenkrantz MJ, Kopple JD, et al. Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int 1981;19:564-7.
18. Ramos JM, Heaton A, McGurk JG, et al. Sequential changes in serum lipids and their subfractions in patients receiving continuous ambulatory peritoneal dialysis. Nephron 1983;35:20-30.
19. Topley N, Coles GA, Williams JD. Biocompatibility studies on peritoneal dialysis. Perit Dial Int 1994;14 (Suppl 3):S21-S28.
20. Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity: impact of more biocompatible solutions, Nephrol Dial Transplant 2002; 17 (Suppl. 3):S12-S15.
21. Davies SJ, Phillips L, Naish PF, et al. Peritoneal glucose exposure and changes in membrane solute transport with time on PD. J Am Soc Nephrol 2001;12:1046-1051.
22. McIntyre CW. Update on peritoneal dialysis solutions. Kidney Int 2007;71:486-490.
23. Alsop RM. History, chemical, and pharmaceutical development of icodextrin. Perit Dial Int 1994;14 (Suppl 2):S5-12.
24. Ho-dac-Pannekeet MM, Schouten N, Langedijk MJ et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int 1996;50:979-986.
25. Davies SJ. Kinetics of icodextrin. Perit Dial Int 1994;14 (Suppl 2):S45-50.
26. Mistry CD, Gokal R, Pers E and the MIDAS study group. A randomized multicenter clinical trial comparing isoosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994;46:496-503.
27. Garcia-Lopez E, Lindholm B, Tranxus A. Biocompatibility of new peritoneal dialysis solutions: clinical experience. Perit Dial Int 2000;20(Suppl 5):S48-56.
28. Barre DE, Chen C, Cooker L, et al. Decreased in vitro formation of AGEs with extraneal solution compared to dextrosecontaining peritoneal dialysis solutions. Adv Perit Dial 1999;15:12-16.
29. Cooker LA, Choo CG, Luneburg P , et al. Effect of icodextrin peritoneal dialysis solution on cell proliferation in vitro. Adv Perit Dial 1999;15:17-20.
30. Bajo MA, Selgas R, Castro MA, et al. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit Dial Int 2000;20(6):742-7.
31. Lee JH, Reddy DK, Saran R, et al. Advanced glycosylation end-products in diabetic rats on peritoneal dialysis using various solutions. Perit Dial Int 2000;20(6):643-51.
32. Woodrow G, Oldroyd B, Stables G, et al. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 2000;15(6):862-6.
33. Posthuma N, Verbrugh HA, Donker AJ, et al. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Perit Dial Int 2000;20(2):174-80.
34. Woodrow G, Stables G, Oldroyd B, et al. Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol Dial Transplant 1999; 14(6):1530-5.
35. Mistry CD, Gokal R. The use of glucose polymer (icodextrin) in peritoneal dialysis: an overview. Perit Dial Int 1994;14(Suppl 3):S158-61.
36. Gokal R, Mistry CD, Peers E, and the MIDAS study group. A United Kingdom multicenter study of icodextrin in continuous ambulatory peritoneal dialysis. Perit Dial Int 1994;14(Suppl 2):S22-7.
37. Gokal R, Mistry CD, Peers E, and the MIDAS study group. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. Perit Dial Int 1995;15:226-30.
38. Wilkie M, Plant M, Edwards L., et al. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int 1997;17:84-6.
39. Douma CE, Hiralall JK, de Waart DR, et al. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells. Kidney Int 1998;53:1014-21.
40. Jones MR, Martis L, Algrim CE, et al. Amino acid solutions for

CAPD-rationale and clinical experience. Miner Electrolyte Metab 1992;18:309-15.
42. Jones M, Hagen T, Boyle CA, et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis 1998;32(5):761-9.
43. Lo WK. Effect of PD Solutions on Patient Outcome. In: Peritoneal Dialysis: A Clinical Update. Ronco C, Dell' Aquila R, Rodighiero MP (eds). Contrib. Nephrol. Basel Karger, 2006, vol 150, pp 90-96.
44. Tranæus A. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution-clinical benefits. The Bicarbonate/Lactate Study Group. Perit Dial Int 2000;20(5):516-23.
45. Williams JD, Topley N, Craig KJ, et al. The Eurobalance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 2004;66:408-418.
46. Jones S, Holmes CJ, Krediet RT, et al. Bicarbonate/lactatebased peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 2001;59(4):1529-38.
47. Jones S, Holmes CJ, Krediet RT et al. and the bicarbonate/lactate study group. Continuous dialysis with bicarbonate/lactate based peritoneal dialysis solution is associated with an increase in dialysate CA125 and a decrease in hyalutronic acid levels. Kidney Int 2001;59:1529-1538.
48. Cooker LA, Luneburg P, Holmes CJ, et al. Interleukin-6 levels decreases in effluent from patients dialyzed with bicar-bonate/lactate-based peritoneal dialysis solutions. Perit Dial Int 2001;21 (supll 3):S102-S107.
49. Tranaeus A. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution - clinical benefits. Perit Dial Int 2000;20:216-223.
50. Topley N, Kaur D, Petersen MM, et al. In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. J Am Soc Nephrol 1996;7(2):218-24.
51. Holmes CJ. Pre-clinical biocompatibility testing of peritoneal dialysis solutions. Perit Dial Int 2000;20(Suppl 5):S5-9.
52. le Poole CT, Welten AG, Weijmer MC, et al. Initiating CAPD with a regimen low in glucose and glucose degardation products, with icodextrin and aminoacids (NEPP) is safe and efficacious. Perit Dial Int 2005, 25 (Suppl 3):S64-S68.
53. Biesen WV, Boer W, Greve BD, et al. A randomized clinical trial with a 0.6% aminoacid $/ 1.4 \%$ glycerol peritoneal dialysis solution. Perit Dial Int 2004;24:222-230.

[^0]: Yazışma adresi: Doç. Dr. Bülent Tokgöz
 Erciyes Üniversitesi Tıp Fakültesi, Nefroloji BD, Kayseri
 E-posta: bulentto@gmail.com

