Vol III Issue VI July 2013 Impact Factor : 0.2105

ISSN No : 2230-7850

Monthly Multidisciplinary Research Journal

Indían Streams Research Journal

Executive Editor

Ashok Yakkaldevi

Editor-in-chief

H.N.Jagtap

IMPACT FACTOR : 0.2105

Welcome to ISRJ

RNI MAHMUL/2011/38595

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial Board readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho Federal University of Rondonia, Brazil Kamani Perera Regional Centre For Strategic Studies, Sri Lanka Janaki Sinnasamy	Mohammad Hailat Dept. of Mathmatical Sciences, University of South Carolina Aiken, Aiken SC 29801 Abdullah Sabbagh Engineering Studies, Sydney	Hasan Baktir English Language and Literature Department, Kayseri Ghayoor Abbas Chotana Department of Chemistry, Lahore University of Management Sciences [PK]
Librarian, University of Malaya [Malaysia]	Catalina Neculai University of Coventry, UK	Anna Maria Constantinovici AL. I. Cuza University, Romania
Romona Mihaila Spiru Haret University, Romania	Ecaterina Patrascu Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret University, Bucharest, Romania
Spiru Haret University, Bucharest, Romania	Loredana Bosca Spiru Haret University, Romania Fabricio Moraes de Almeida	Ilie Pintea, Spiru Haret University, Romania
Anurag Misra DBS College, Kanpur	Federal University of Rondonia, Brazil	Xiaohua Yang PhD, USA
Titus Pop	Postdoctoral Researcher	College of Business Administration
	Editorial Board	
Pratap Vyamktrao Naikwade ASP College Devrukh,Ratnagiri,MS India	Iresh Swami Ex - VC. Solapur University, Solapur	Rajendra Shendge Director, B.C.U.D. Solapur University, Solapur
R. R. Patil Head Geology Department Solapur University, Solapur	N.S. Dhaygude Ex. Prin. Dayanand College, Solapur	R. R. Yalikar Director Managment Institute, Solapur
Rama Bhosale Prin. and Jt. Director Higher Education, Panvel	Jt. Director Higher Education, Pune K. M. Bhandarkar Praful Patel College of Education, Gondia	Umesh Rajderkar Head Humanities & Social Science YCMOU, Nashik
Salve R. N. Department of Sociology, Shivaji University, Kolhapur	Sonal Singh Vikram University, Ujjain	S. R. Pandya Head Education Dept. Mumbai University, Mumbai
Govind P. Shinde Bharati Vidyapeeth School of Distance Education Center, Navi Mumbai	G. P. Patankar S. D. M. Degree College, Honavar, Karnataka	Alka Darshan Shrivastava Shaskiya Snatkottar Mahavidyalaya, Dhar
	Maj. S. Bakhtiar Choudhary	Rahul Shriram Sudke

Ph.D.-University of Allahabad

Director, Hyderabad AP India.

S.Parvathi Devi

Ph.D , Annamalai University, TN

Devi Ahilya Vishwavidyalaya, Indore

Awadhesh Kumar Shirotriya Secretary, Play India Play (Trust),Meerut Sonal Singh

Chakane Sanjay Dnyaneshwar Arts, Science & Commerce College,

Indapur, Pune

Satish Kumar Kalhotra

S.KANNAN

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Indian Streams Research Journal	ISSN 2230-7850 Volume-3, Issue-6, July-2013
MORPHOMETRIC ANALYSIS WATERSHED FOR SOIL RES YERALA RI R. S. Sh Head & Assista Deptt. Of Geography, Elph	S AND PRIORITIZATION OF SOURCE MANAGEMENT IN VER BASIN hikalgar ant Professor, hinstone College, Mumbai.
Abstract: The development of morphometric techniques geometry of the drainage basins and its network. Watershe is necessary in order to develop a sustainable watershed linear and shape morphometric parameters and prioritiza for soil resource management. Yerala river basin has an North and 740 20' to 740 40' East Longitude in Satara and Information System (GIS) techniques and Shuttle Rada DEM) data was used for evaluation of morphometric parameters Hydro Tool. The prioritization was carried out by assignin was calculated. Watersheds with highest compound value value were of high priority. The highest priority zone cons watersheds. High priority indicates that watersheds are r provide with immediate soil resource management measu Keyword: Morphometric analysis, prioritization, Yerala I	was a major advance in the quantitative description of the ed prioritization on the basis of morphometric parameters management plan. The present study aims to assess the tion of twenty three sub-watersheds of Yerala river basin area of 3041 km2 and lies between in 160 55' to 170 28' d Sangli districts. Remote Sensing (RS) and Geographical r Topography Mission Digital Elevation Model (SRTM meters. Watershed boundary has been prepared using Arc- ing ranks to the individual indicators and a compound value e were of low priority while those with lowest compound ists of eight watersheds, medium of eleven and low of four much more susceptible to soil erosion hence it should be res. River Basin, SRTM, DEM,
INTRODUCTION: A watershed is a perfect unit for management of natural resources and mitigation of the impact of natural disasters for attain sustainable development. The morphometric characteristics at the watershed scale may contain important information regarding its formation and development because all hydrologic and geomorphic processes happen within the watershed. Morphometry is the measurement and mathemati cal analysis of the formation of the earth's surface, shape and dimension of its landforms. Morphometric studies involve area, altitude, shape, size, slope and profiles of watershed. (Singh S. 2000).Watershed prioritization is the ranking of different sub watersheds of a watershed according to the order for soil conservation measures. Morphometric analysis	2010, Londhe et al., 2010, Deo Kumar, T et al., 2012, Panhalkar, S et al., 2012, Kanth, T et al., 2012} The quantitative analysis of morphometric parameters is found to be of vast utility in watershed prioritization for soil resource management and conservation at micro level for sustainable development. The present paper evaluates to prioritize Yerala river basin on the basis of morphometric analysis. Objectives: The main objective of the present study is to assess the morphometric characteristics of Yerala river basin to prioritize the sub-watershed for soil resource management and conservation. Materials and Methods:
could be used for prioritization of sub-watersheds by studying different linear and aerial parameters of the watershed even without the availability of soil maps (Biswas et al., 1999). Morphometric characteristics of many river basins and sub basins in different parts of the world have been studied using conventional methods (Horton, 1945; Strahler, 1957, 1964; Krishnamurthy et al., 1996). Various scholars have carried out morphometric analysis of river	In the present study, morphometric analysis and prioritization of sub-watersheds in Yerala river basin is based on the integrated use of RS and GIS techniques. SRTM (90 m resolution) data is used. Yerala river basin was delineated with the help of ARCHYDRO software. Sub-watersheds are also demarcated by using the same software to carry out the sub-basin wise morphometric analysis. Twenty three sub- watersheds are identified for further analysis. The linear morphometric parameters such as drainage density stream frequency bifurcation ratio texture

Morphometric characteristics of many river basins and sub basins in different parts of the world have been studied using conventional methods (Horton, 1945; Strahler, 1957, 1964; Krishnamurthy et al., 1996). Various scholars have carried out morphometric analysis of river basins by using RS and GIS techniques. Morphometric analysis was employed for characterizing watersheds {Nag, 1998, Vittal et al., 2004, Vijith, H et al., 2006, Rudraiah, M et al., 2008, Thomas et al., 2009, Al Saud, M 2009, Rao, N et al., 2010, Rao, L et al., 2011, Zende, A et al., (2011), Mishra, A et al., 2011, Pareta, K et al., 2011, Pal, S et al., 2012, Senadeera,

The linear morphometric parameters such as drainage density, stream frequency, bifurcation ratio, texture ratio and shape parameters such as form factor, elongation ratio, compactness constant and circulatory ratio were computed based on the formula suggested by Horton, Strahler, Schumn and Miller given in Table I.

Strahler, Schumn and Miller given in Table I. The linear morphometric parameters have a direct relationship with erodibility, higher the value, more is the

K et al., }, for the prioritization of sub watersheds {Shri Mali et al., 2001, Nooka Ratnam, K et al., 2005, Thakkar and Dhiman 2007, Javed, A et al., 2009, Mishra and Nagarajan,	erodibility. Shape morphometric parameters have an inverse relationship with erodibility, lower the value, more is the erodibility. Hence, the ranking of the sub-watersheds has	
	1	

Ind	ian Streams R	lesearch Journal					Volur	ne-3. Is	ISSN 223 sue-6. July	0-7850 v-2013
hee	n determined by	y assigning the highest ran	ik based on	_			vorui			
high	hest value in case	of linear parameters and lov	vest value in			YER	ALA RI	VER B	ASIN	
case	e of shape parai	meters. Prioritization rating	g of all the		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			52		
twe	nty three sub-w	vatersheds of Yerala river	basin was							23
carr	ied out by calcu	lating the compound param	neter values.	z	2	Sec.		mit	14 dest	7
The	sub-watershed	with the lowest compound	d parameter	*45'0"	- 7	Nor. Jahren		MAH	ARASHTRA	.450"
clas	sification has be	en given into three major	classes i e	5	X	He Antalay		BB	0 100 200 1	12
Hig	h priority. Mediu	am priority and Low priorit	tv. The high		1		3 may	Ham		um
pric	ority indicates ne	eed of reclamation process	and action		Rahimatpur	Le Yo	Yadui Y_04	- 1.02 V		
plar	n for soil resource	management and conservat	ion.	N.O.V	1	in	+	<u>.</u>		00"N
	Formulation for C	computation of Morphometric Pa	rameters	17*30	-	Y_07	Y_05 Y Mayani	_06		17°30
Sr	. Morphometric	Formula	Reference		R		¥ 08	and a		
1.	Basin Area (A) Sq Km.	GIS Software Analysis	-		2		X	09	Logond	
2.	Basin Perimeter (P) Km.	GIS Software Analysis	-	z	Karad Riy S	11 Kadegaon	Y_10	the second	Legena	z
3.	Stream Order (Nu)	GIS Software Analysis	Strahler (1964)	°15'0"	1	1. X 13	V.14 .	200	Places River	150"
5.	Basin Length	Lb=1.312*A ^{0.568}	-	17	1	Y_16 Y_1	5 Y_17	57	Watershed	17
		Lb = Length of Basin (km) A = Area of the basin (km ²)					Y_19 Andhali	2	Elevation (M)	
6.	Bifurcation Ratio (Rb)	Rb=Nu/Nu+1 Nu= Total number of stream segment of	Schumm (1956)				Palus		Below 600	
		order u Nu+1= Total number of stream segments in		NO			7.22	Tasgaon	600 - 700	N
7	Maan Diffurnation Patio	next higher order Physical and the provided of the second	Strahlar (1964)	17"01			Branchanal		800 - 900	17.01
/.	(Rbm)	orders	Stranier (1964)				9		900 - 1005	
8.	Drainage Density (Dd) km/km ²	Dd = Lu/A Lu = Total stream length of all order,	Strahler (1964)		74°15'0"E	Λ	74°30'0"E	74°45' 0 5 10	0"E 75 20 30	'0'0"E 40
9	Texture Ratio (T)	T = Nu/P	Horton (1945)							Km
		P = Perimeter of the Basin (km)					Μ	ap 1		
10	Stream Frequency (F)	F = Nu/A Nu=total number of stream segments of	Horton (1945)					<u> </u>		
		all order, A= Area of the Basin (km ²),			YEI	RALA RIVER	BASIN: MOR Basic Parameters	PHOMETRIC	PARAMETERS Stream Ana	alysis
11	Circulatory Ratio (Rc)	Rc= $4\pi A/P^2$ Rc= Circularity Ratio	Miller (1953)	Sub-w:	itershed	Area (Km ⁻)	(Km)	Basin Lengti (Km)	stream order	Stream Length
		A= Area of the Basin (km^2), $R = Parimeter of the Basin (km^2)$		Y_0 Y_0	1 2	393 77	150.537 60.239	39.044 15.469	272 50	(Km) 290.29 66.56
12	Elongation Ratio (Re)	$\frac{Re=2 v(A/\pi) / Lb}{E}$	Schumm (1956)	Y 0 Y 0 Y 0	3 4 5	130 140 186	85.762 87.697 90.359	20.828 21.724 25.528	79 96 99	112.82 108.58 156.21
		Re=Elongation ratio Lb= Length of basin (km),		Y 0 Y_0 Y 0	6 7 8	174 265 71	99.249 112.918 68.162	24.579 31.213 14.772	113 162 31	137.68 216.25 58.36
13	From Factor (Rf)	A = Area of the basin (km ²) $\mathbf{Rf} = \mathbf{A}/\mathbf{Lb}^2$	Horton (1945)	Y_0 Y_1	9	186 232 137	96.346 138.018 89.028	25.528 28.942 21.458	129 130	148.44 171.66 108.45
		A = Area of the basin (km^2) Lb ² = Square of the basin length		Y_1 Y_1 Y_1	2	87 33	67.678 40.704	16.580	67 18	74.39 28.07
14	Compactness Constant	$Cc = 0.2821 \text{ P/A}^{0.5}$	Horton (1945)	Y_1 Y_1 Y_1	5 6	82 12 105	24.616 68.646	5.382 18.449	45 14 72	13.6 86.04
		P = Perimeter of the basin (km)		Y_1 Y_1 Y_1	7 8 9	148 246 116	94.229 140.316 77.113	22.420 29.922 19.523	99 169 75	127.03 199.92 89.86
Tat	ble No. I]	Y 2 Y 2 V 2	0 1 2	29 87 55	44.272 61.509 54.796	8.883 16.580 12.778	21 60 36	23.7 69.03 45.79
				Y 2 Yerala	3 Basin	50 3041	71.791 481.540	12.105	32 1969	40.96
STI	UDY REGION:			Sub- watershed	Drainage Density	Linear Pa Stream Frequency	Mean Bifurcation	Texture Form Ratio Factor	Elongation Ratio	Compa ctness
	The study re	egion selected for present stu	idy is Yerala	Y 01	(Dd) 0.74	(F) 0,69	Ratio (Rbm) 1.74	(T) (Rf) 1.81 0.258	(Re) (Rc) 0.573 0.218	Consta nt (Cc) 2.142
rive	t basin of west pa	irt of Maharashtra. It covers	total area of	Y 02 Y 03 V 04	0.86	0.65	1.74 2.05 7.82	0.83 0.322 0.92 0.300	0.640 0.267 0.618 0.222 0.615 0.229	1.937 2.122 2.001
740	20' to 740 40'	East Longitude in Satara	and Sanoli	Y_05 Y_06	0.84	0.53	3.59	1.10 0.285 1.14 0.288	0.603 0.229 0.603 0.286 0.606 0.222	2.091 1.869 2.123 1.057
dist	ricts. Twenty the	ree sub-basins are identifie	ed in Yerala	Y_07 Y_08 Y_09	0.82 0.82 0.80	0.61 0.44 0.69	1.8 1.85 1.73	1.45 0.272 0.45 0.325 1.34 0.285	0.589 0.261 0.644 0.192 0.603 0.252	1.957 2.282 1.993
1.00	r basin. Minimur	n and maximum elevation of	of the area is	Y_10 Y_11 Y_12	0.74 0.79 0.86	0.56 0.73 0.77	1.67 3.66 4.56	0.94 0.277 1.12 0.298 0.99 0.316	0.594 0.153 0.616 0.217 0.635 0.239	2.556 2.146 2.047
rive				V 13	0.85	0.55	2.39	0.44 0.361	0.678 0.250	1 999
rive 458	meter and 1004	meter respectively. The ave	erage annual	Y_14	0.79	0.55	1.72	0.64 0.319	0.638 0.206	2.203
rive 458 rain	meter and 1004 fall increases fro	meter respectively. The ave om 1900 mm in the western	erage annual side to 600	Y 14 Y 14 Y 15 Y 16 Y 17	0.79 1.13 0.82 0.86	0.55 1.17 0.69 0.67	1.72 2.04 4.42 1.93	0.64 0.319 0.57 0.414 1.05 0.308 1.05 0.294	0.638 0.206 0.727 0.249 0.627 0.280 0.612 0.209	2.203 2.005 1.890 2.185
rive 458 rain mm	meter and 1004 fall increases from in the east side. (meter respectively. The ave om 1900 mm in the western Zende A. M, 2011)	erage annual side to 600	Y 14 Y 15 Y 16 Y 17 Y 18 Y 19 Y 27	0.79 1.13 0.82 0.86 0.81 0.77 0.82	0.55 1.17 0.69 0.67 0.69 0.65 0.72	1.72 2.04 4.42 1.93 4.98 3.38	0.64 0.319 0.57 0.414 1.05 0.308 1.05 0.294 1.20 0.275 0.97 0.304 0.47 0.304	0.638 0.206 0.638 0.206 0.727 0.249 0.627 0.280 0.612 0.209 0.592 0.157 0.623 0.245 0.624 0.209	2.203 2.005 1.890 2.185 2.524 2.020

Т

0.24

0.289 0.230 0.122 0.165

0.623

0.6

0.659

2.1
2.5
2.0
2.3

1.860 2.084 2.864 2.463

0.341
0.195

0.98 0.66 0.45 4.09

1.9 4.9 3.3 1.8

4.53 2.64 1.53 1.74

2	

0.6

Indian Streams Research Journal

RESULTAND DISCUSSION:

A] Morphometric Analysis:

I) Basic Parameter:

Basic parameters include watershed area, perimeter and basin length.

a) Basin Area (A):

The drainage area (A) is probably the single most important watershed characteristic for hydrologic design and reflects the volume of water that can be generated from rainfall. Present study shows that the Yerala river basin covers an area about 3041 km2. The author has computed the twenty three sub watershed area by using ArcGIS-10 software, ranging from 12 km2 to 393 km2. (Table 2)

b) Basin Perimeter (P):

Basin perimeter is the outer boundary of the watershed that enclosed its area. It is measured along the divides between watersheds and may be used as an indicator of watershed size and shape. Perimeter of the watersheds is about 481.54 km. The author has computed the sub-watershed perimeter by using ArcGIS-10 software, ranging from 24.61 km to 150.53 km.

(Table 2)

c) Length of the Basin (Lb):

Basin length is usually defined as the distance measured along the main channel from the watershed outlet to the basin divide. Basin length is the basic input parameter to count the major shape parameters. In the result, Yerala river basin length is 124.82 km. The author has computed the sub-watershed basin length, ranging from 5.38 km to 39.04 km. (Table 2)

II) Linear Parameter:

The linear aspects of morphometric analysis of subwatershed include stream order, stream length, mean stream length, stream length ratio, drainage density and bifurcation ratio.

a) Drainage Density: (Dd)

According to Horton (1932), Drainage density is the ratio of total stream length of all orders in drainage basin to the total area of the basin. Drainage density in the Yerala river basin is low and varies from 0.74 to 1.13 km/km2, thus indicates that the regions has permeable subsoil and low relief. (Table 2)

b) Bifurcation Ratio: (Rb)

The bifurcation ratio is the ratio of the number of stream segments of a given order to the number of stream segments of the next higher order (Schumn 1956). The lower values of bifurcation ratio are characteristics of the watersheds, which have suffered less structural disturbances and the drainage pattern is not distorted. (Strahler 1964). The mean bifurcation ratios of all orders, varies from 1.53 to 7.82 and entire basin is 1.74. The highest value of mean

ISSN 2230-7850 Volume-3, Issue-6, July-2013

c) Stream Order (Su):

Stream ordering is the first step of quantitative analysis of the drainage basin. In the present study, stream ordering has been carried out using Strahler .The smallest stream is called as first order stream. A second order stream forms when two first order streams connect and a third order when two second order streams are connected and so on (Strahler, 1964).

d) Stream Number (Nu)

The total of order wise stream segments is known as stream number. In Yerala river basin the total number of streams is 1969, out of which 977 belong to first order, 435 are of second order, 274 are of third order, 136 are of fourth order, 76 of fifth and 71 is of sixth order. The sub-watershed wise total stream number is given in the table 1. It has been observed that, frequency of first order streams is highest and the number of stream segments decreases as the stream order increases.

e) Stream Length (Lu)

The total stream lengths of the various segments are computed with the help of Arc GIS software. In the Yerala river basin, the total length of stream segments is maximum in first order streams and decreases as the stream order increases. This is a normal trend and indicates that the topography is gently sloping, low relief and homogenous lithology.

f) Texture ratio (T)

According to Horton (1945), It is the total number of stream segments of all orders per perimeter of that area and it depends on the underlying lithology, infiltration capacity and relief aspect of the terrain. The value of texture ratio of Yerala river basin is 4.09 indicating moderate texture.

III) Shape Parameter: a) Form factor (Ff)

Form factor is the ratio of the basin area to the square of basin length. It is used as a quantitative expression of the shape of basin form. If the watershed is narrow, the form factor will be low and wider watersheds have high form factor values. (Gregory & Walling, 1985). The elongated watershed with low form factors have lower peak flow of longer duration, whereas, high form factors have high peak flows of shorter duration. The Yerala river basin is having low value (0.19) of from factor. The form factor of sub-watersheds varies between 0.25 to 0.41. The analysis shows that the sub watersheds are more or less elongated.

b) Elongation ratio (Re)

According to Schumm (1965), elongation ratio is the ratio of diameter of a circle of the same area as the basin to the maximum basin length. According to Strahler (1964), Re value ranged between 0.6 and 0.8 are associated with high relief and steep ground slope. The lower value of the

bifurcation ratio is found in sub-watershed Y_04 suggesting structural control in the area and low permeability whereas all other basins are geologically homogenous. (Table 2)	elongation ratio indicates that particular watershed is more elongate than others. The elongation ration of Yerala river basin is 0.49, which is represented the watershed is more	
	3	

Indian Streams Research Journal

elongated. In the Yerala river basin, The Re value for all sub watersheds also varies from 0.57 to 0.72 indicating high relief and steep ground slope.

c) Circulatory ratio: (Rc)

Circularity ratio is the ratio of the basin area to the area of a circle having the same circumference perimeter as the basin, which is dimensionless and expresses the degree of circularity of the basin (Miller, 1953). It is useful for flood hazard assessment. Higher the circularity value, higher is the flood hazard at the peak time at the outlet point. In the Yerala river basin the Circularity ratio varies from 0.12 to 0.28 indicating sub watersheds are elongated.

d) Compactness Constant: (Cc)

Compactness constant is the ratio between the area of the watershed and the perimeter of the watershed. It is dependent on the slope and independent of size. Lower values of this parameter indicate the less erosion and more elongation of the watershed. In this study the value of compactness constant is 2.46 of the Yerala river basin and all sub watersheds also varies from 1.86 to 2.86.

B] Watershed Prioritization

The morphometric parameters like drainage density, bifurcation ratio, stream frequency, elongation ratio, form factor, circularity ratio and compactness constant can be termed as erosion risk assessment parameters and have been used to prioritize watershed. (Biswas, et al. 1999). The sub-watersheds have been classified into three priority zones according to their compound value: High (<10.0), Medium (10-15) and Low (>15). The watershed wise prioritization ranks are given in table 3 and the final prioritized map of the study area is shown in Map 2.

The watersheds which fall in high priority category are $Y_1, Y_5, Y_7, Y_9, Y_{11}, Y_{12}, Y_{17}$ and Y_{18} . There are eleven watersheds falling in medium priority. These include $Y_2, Y_3, Y_4, Y_6, Y_{10}, Y_{15}, Y_{16}, Y_{19},$ Y_{20}, Y_{21} and Y_{22} . Low Priority category has been attained by Y_8, Y_{13}, Y_{14} and Y_{23} . Highest priority indicates the higher degree of soil erosion in the particular sub-watershed and it becomes potential area for applying soil conservation measures. Thus, soil management and conservation to be applied first to Y_1, Y_5, Y_7, Y_9 , Y_{11}, Y_{12}, Y_{17} and Y_{18} sub-watersheds followed by other sub-watersheds.

CONCLUSION:

The morphometric analyses of the Yerala river basin were carried out through measurement of linear and areal aspects of the watershed. Drainage density shows that, moderate permeable sub-soil and low relief found in the Yerala river basin. The mean bifurcation ratio is indicating that, all basins are geologically homogenous. The value of circularity ratio and form factor suggests that the subwatersheds are more or less elongated. In the Verala river

ISSN 2230-7850 Volume-3, Issue-6, July-2013

important aspects of planning for implementation of its development and management programs. A result of prioritization of sub-watersheds shows that, sub-watersheds $Y_1, Y_5, Y_7, Y_9, Y_{11}, Y_{12}, Y_{17}$ and Y_{18} are fall in high priority category. High priority sub-watersheds are possibly having greater degree of soil erosion. Therefore, immediate attention towards soil conservation measures is required in these watersheds to preserve the land from further erosion.

Map 2

REFERENCES:

1. Al Saud, M., 2009, Morphometric Analysis of Wadi Aurnah Drainage System, Western Arabian Peninsula, The Open Hydrological Journal 3 pp. 1-10

basin, the value of elongation ratio for all sub watersheds indicating that, high relief and steep ground slope.	2.Biswas, S., Sudharakar, S. & Desai, V., 1999, Prioritization of sub watersheds based on morphometric analysis of drainage basin: a Remote Sensing and GIS approach Journal	•
	4	

Indian Streams Research Journal	ISSN 2230-7850	
 of the Indian society of remote sensing, 27, pp. 155-166. 3. Deo Kumar T., Dhakal, D., Shrestha, D. & Sharma N. P., 2012, Morphometric analysis and prioritization of miniwatersheds in Rongli watershed, Sikkim (India) using remote sensing and GIS techniques, International Journal of Fundamental & Applied Sciences, Vol. 1, No. 3 4. Gregory, K. J. and Walling D. E., 1985, Drainage Basin Form and Process; A Geomorphological approach, Pp 47-54. 5. Horton, R.E., 1932, Drainage Basin characteristics, Trans. Amer. Geophysics Union, 13, pp 350-361. 6. Horton, R.E., 1945, Erosional development of stream and their basin, hydro physical approach to quantitative morphology. Bull. Geol. Society Am., vol.56, pp. 275-370. 7. Javed A., Khanday M. Y. & Ahmed R., 2009, Prioritization of subwatersheds based on morphometric and land use analysis using Remote Sensing and GIS Techniques, Journal of the Indian society of remote sensing, 37 pp. 261-274. 8. Kanth, T. and Zahoor H., 2012, Morphometric Analysis and Prioritization of Watersheds for Soil and Water Resource Management in Wular Catchment Using Geo-Spatial Tools, International Journal of Geology, Earth and Environmental Sciences ISSN: 2277-2081 9. Londhe, S., Nathawat, M.S. and Subudhi, A.P., 2010, Erosion Susceptibility Zoning and Prioritization of Mini Watersheds using Geomatics Approach, International Journal of Suchan Lake Catchment, North India, Journal of Applied Geology, 3(1), pp. 54-60. 11. Miller, V.C., 1953, A quantitative geomorphic study of drainage basin, Characteristic in the clinch, Mountain area, Yerdinia and Tennesser, Projet NR 389-042, Tech. Rept. 3 Columbia University, Department of Geology, ONR, Geography Branch, New York. 12. Mishra, S.S. and Nagarajan, R., 2010, Morphometric Analysis of Tons basin, Rewa District, Madhya Pradesh, based on watershed approach, Earth Science India, eISSN: 0974-8350 Vol. 4(III). 13. Mishra, S.S. and Nagarajan, R., 2010, Morphome	 Journal of Environmental Sciences, Volume 3, No 1. Journal of Environmental Sciences, Volume 3, No 1. Pareta, K., Pareta U., 2011, Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India using ASTER (DEM) Data and GIS, International Journal of Geomatics and Geosciences. Rao L.A., Rehman, A. & Yusuf, A., 2011, Morphometric Analysis of Drainage Basin Using Remote Sensing and GIS Techniques: A Case Study of Etmadpur Tehsil, Agra District, U.P., International Journal of Research in Chemistry and Environment, Vol. 1, Issue 2. Rao, N.K., Latha, S.P., Kumar, A.P. and Krishna, H.M., 2010, Morphometric Analysis of Gostani River Basin in Andhra Pradesh State, India Using Spatial Information Technology, International Journal of Geomatics and Geosciences,1(2). Rudraiah, M., Govindaiah, S. & Vittala, S., 2008, Morphometry using Remote Sensing and GIS techniques in the sub-basins of Kagna basin, Gulburga District, Karnataka, India. Journal of the Indian society of remote sensing, 36, pp. 351-360. Schumm, S.A., 1956, Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geol Soc Am Bull, 67 pp. 597-646. Senadeera K., Piyasiri, S. & Nandalal K., The evaluation of Morphmetric Characteristics of Kotmale Reservoir catchment using GIS as a tool, Sri Lanka, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX. Sirahler, A.N., 1964, Quantitative geomorphology of drainage basin and channel network, Handbook of Applied Hydrology McGraw Hill, New York section-4-II. Thomas, J., Joseph, S. and Thrivikramaji, K.P., 2010, Morphometric Analysis of the Indian Society of Remote Sensing and GIS Techniques, Journal of the Indian Society of Remote Sensing and GIS Techniques, Journal of the Indian Society of Remote Sensing and GIS Techniques, Journal of the Indian Society of Remote Sensing, 35(4) Thomas, J., Joseph, S. and Thrivikramaji, K.P.,	MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN VERALA RIVER BASIN R. S. Shikalgar

17. Panhalkar, S., Mali S., Pawar C., 2012, Morphometric analysis and watershed development prioritization of Hiranyakeshi Basin in Maharashtra, India, International	
5	

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished research paper.Summary of Research Project,Theses,Books and Books Review of publication,you will be pleased to know that our journals are

Associated and Indexed, India

- ★ International Scientific Journal Consortium Scientific
- ★ OPEN J-GATE

Associated and Indexed, USA

- Google Scholar
- EBSCO
- DOAJ
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Databse
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database

Indian Streams Research Journal 258/34 Raviwar Peth Solapur-413005,Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.isrj.net