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A B ST R A C T.   

 In this paper, we have studied non-self-similar gas motion in presence of magnetic field which result from 

the propagation of plane, cylindrical and spherical shock waves through the gas requires complicated and 

cumbersome calculations. An approximate method of calculation of such motions is taken from [1-3]. 
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INTRODUCTION: 

 The investigation of non-self-similar gas 

motion which results from the propagation of shock 

waves through the gas requires complicated and 

cumbersome calculations. In a few cases these have 

actually been carried out, e.g. on the problem of point 

explosion [7]. 

 In [1-3] an approximate method of 

calculation of such motions is given, valid for a high 

gas density jump across the shock wave, i.e. for the 

propagation of plane, cylindrical & spherical shock 

waves of large intensity in a gas. This method is 

based on the representation of gas dynamical 

quantities in the form of series in a spherical form for 

the powers of parameter , which characterizes the 

ratio of the gas density in front of the wave to the gas 

density behind the wave. The successive terms of the 

series are found from the equations by means of 

quadratures. When only the two first term of the 

series are taken into account, the gas parameters in a 

disturbed region behind the shock wave are expressed 

in terms of the function R*(t) in [2], which treats of 

the law of propagation of a shock wave. For the 

determination of this function in the problems of 

motion resulting from the explosion in a gas and from 

the expansion of a movable boundary (piston) in a 

gas, a law of conservation of energy in integral form 

may be used, pertaining to the whole of the region of 

disturbed gas motion [3]. 

FLOW GOVERNING EQUATION: 

 The total energy of a moving gas (the sum 

of its internal and kinetic energies) at each instant 

must equal to the sum of the energy E which was 

generated by the explosion the initial energy of the 

gas affected by the motion, magnetic field and the 

work done by the piston. In the presence of magnetic 

field the pressure term become change which is given 

by p* = p + 
2

2H
 (where p is fluid pressure and  
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2

2H
 is magnetic pressure) then we have used 

effective pressure for p*. Taking the expression  

)1(
*


p
 to be the internal energy per unit mass of 

a gas (where p* is the effective pressure,  is the 

density,  is the ratio of specific heats) b, then we 

have 
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Where v*-v0 is the volume occupied by the moving 

gas, v0 is the volume displaced by the piston, p1
* is 

the initial effective gas pressure p0* is the effective 

pressure on the piston 
t
R



, is the velocity of gas 

particles and t is the time. 

 To use this integral relationship along with 

the representation of the desired quantities R, p* and 

 in the form of a series in powers of , we shall also 

represent the function R*(t) which gives the law of 

propagation of shock wave in the form of a series for 

the function which determines the form of a low 

shock wave for the steady flow past a body. We shall 

follow wave the method of Liubimov [5] used for the 

case of non-stationary one dimensional motion, 

 R*(t) = R0(t) +  R1*(t) + ………… 

 Substituting series for R, p* and  in 

equation (1) and equating the terms on the right with 

the terms on the left for the same powers of , after 

appropriate transformations, we obtain a sequence of 

ordinary differential equations for the determination 

of function R0, R1 etc. 

 As will be shown below, by proper choice of 

the main terms in the expansions of the quantities 

t
R



 and p* in powers of , we can obtain a 

satisfactorily accurate first approximation of the 

determination of the law of propagation of a shock 

wave (and evidently all parameters of the stream 

immediately behind it) and the effective pressure 

acting on the piston. 

 In accordance with the result of [2] let 
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where  is the initial gas density, m is the Lagrange 

coordinate which is introduced by the relation dm = 

1r–1 dr, where r is the initial coordinate of a particle, 

 = 1, 2, 3 correspond respectively to the flow with 

plane, cylindrical and  spherical  waves.  The main 

terms are chosen such that in the case where R0(t) is 

the law of propagation of a shock wave, they will 

yield exact values of the corresponding quantities 

immediately behind the shock wave, i.e. for m = 



 
01 R

. 
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 After substitution of the expressions for 

t
R



 and p* into the integral relationship (1) for the 

determination of function R0(t) we obtain the 

following equation (index 0 is subsequently omitted) 

: 
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where   

  p0* =  
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   = 2[ (1 – 1) + 1], 11 = 1, 12 

= 13 = 0. 

 For simplicity it is assumed that at the start 

the gas occupies all space. 

 We shall evaluate the accuracy of 

determination of function R(t) and p0* from equation 

(2) by comparing the solutions of this equation with 

the known exact solutions of problems on self-similar 

gas motions. 

 

IMPULSIVE MOTION OF PISTON  

Let Rº = ctn+1 

(n  –1). For n  0 the motion is self-similar only 

under the condition that a1 = 0, i.e., only as long as 

the shock wave may be considered to be strong. 

Assuming E = 0 and taking R(0) = 0 from equation 

(2) we find 

  R = –1/ (, ) R0, 
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where  is the ratio of the volume displaced by the 

piston to the volume bounded by the shock wave and 

p00* is the effective gas pressure immediately after the 

shock wave : 
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 It is interesting that in the approximation 

under consideration the values and p0*/p00* do not 

depend upon each of the parameters  and  

separately, but only upon their combination . Graphs 

of these function for  = 1.4, i.e., for 
)1(
)1(




  

are represented in figure 1.  

 In this figure the values of  and p0*/p00* are 

represented, obtained at the results of numerical 

integration of corresponding exact solutions for = 2 

(hollow squares, 3) and for  = 3 (hollow circles, 1) 

for  = 1 and n = 0 the approximate values, 

predicated upon the choice of the main terms in the -

expansions, coincide with the exact values (hollow 

triangles, 6); for =1 and n0 the results of exact 
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calculations are not available. Half-shaded symbols 

2,5,7 for  – 1 correspond to the exact solution of the 

problem of a strong explosion [5]. 

 Finally, the black squares 4 correspond to 

the values obtained for the exact solution of the 

problem with a cylindrical piston ( = 2), expanding 

according to the indicated law. This case may be 

considered as the limiting case of impulsive piston 

expansion for n  . 

 Figure 1 shows that in all the cases 

enumerated approximate solutions for  = 1/6, have a 

quite satisfactory accuracy. 

EXPANSION OF PISTON WITH CONSTANT 

VELOCITY:  

 If R0 = UT, then the motion will be 

progressive also for a1  0. Substitution of this 

expression for R0 into equation (2) for E = 0 leads to 

the relation 

  R = Dt 

where 
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 For  = 1 these relations are exact; their 

curves for  = 1.4 are represented in figure 2 by solid 

lines. For  = 2 and  =3 these relations are only of 

approximate validity; relations obtained for  =3 and 

 = 1.405 by numerical integration of exact equations, 

are represented in this figure by the dashed line. For  

=3 approximate expressions retain satisfactory 

accuracy up to the values 
5.0
4.0~1

D
a

, which 

corresponds to  ~ 0.3  0.35 and up to the effective 

pressure ratios in the shock wave of the order 5-7. 

 

STRONG EXPLOSION: 

 Assuming in equation (2) R0 = 0, *
1p  = 1 

and E  0 and presuming R(0) = 0, we find  
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 Figure 3 shows the curves of the 

approximate functions obtained for the quantities  

p0*/p00* and 
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and  functions, and the exact values of these 

quantities [6] for  = 1, 2, 3 . 

 From figure 3 it follows that in the case of 

the solution of the problem of the strong explosion, 

the approximate expression for R and p0* 

satisfactorily agree with the exact expressions up to 

the values   ~ 1.6  1.8,  i.e., up to the values  ~ 

0.25  0.30. (Note that the relative error in the 

determination of R is  + 2 times smaller that the 

difference corresponding to the quantity Z between 

the exact and the approximate values Z in figure 3). 

 Equation (2) allows the computation of any 

non-self similar motions resulting from an explosion 

and from the expansion of a piston (the equation is 

easily modified for the cases when the initial volume 

of a piston is different from zero), provided the 
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intensity of the resulting shock waves is sufficiently 

large, so that  does not exceed 0.2 – 0.3. 

 Thus, the examples presented of comparison 

of the approximate and exact solutions support the 

conclusion that the functions R(t) and p0*(t), 

determined by equation 2, retain a satisfactory 

accuracy up to the values  ~ 0.20  0.30. 

 In particular, using the law of plane cross-

sections, in solving this equation one may determine 

the form of a shock wave, which is created by the 

flow past a profile ( = 1) or a body of revolution ( 

= 2) of a gas with large supersonic velocity. The 

effective pressure distribution on the surfaces of these 

bodies may likewise be determined, even in the cases 

when the front part is some what blunt [4].  

 

RESULT: 

 In present paper, we have studied the 

propagation of strong shock waves in 

magnetohydrodynamics. We did not get any 

significant change in nature of shock wave. Only we 

get change in pressure. Hence the surface of shock 

wave becomes smooth in presence of magnetic field. 

The results are shown in figures.  
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