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ABSTRACT 
The numerical solution of neutron scalar flux for one-group and one 

dimensional slab-geometry with isotropic scattering is studied by using Chebyshev 
quadrature sets and Spectral Green’s  Function (SGF) method. The unknowns  in  
the  method are the cell-edge and cell-average angular fluxes, and numerical values 
for these quantities are obtained by using two different quadrature sets.  Finally,  
tabulated  numerical results of cell-average scalar fluxes are provided. 

 
TEK-BOYUTLU NÖTRON TRANSPORT DENKLEMİNİN CHEBYSHEV 

QUADRARÜRLERİ İLE BİR SAYISAL ÇÖZÜMÜ  
 

ÖZET 
Spektral Green Fonksiyonu (SGF) metodu ve Chebyshev quadratürü 

kullanılarak tek-guruplu ve tek-boyutlu  izotropik  saçılmalı dilim-gometride nötron 
skalar akı- sının sayısal  çözümlemesi yapıldı.  Metottaki bilinmeyenler hücre-kenarı 
ve hücre-ortalama açısal akıları olup bunların sayısal değerleri farklı iki quadratür 
seti kullanılarak elde edilmiştir. Sonuçta, hücre-ortalama skalar akıları için sayısal 
sonuçlar tablolar halinde verilmiştir. 
 

INTRODUCTION 
Up to now, various methods are developed and widely used for the solution 

of  SN transport equations. One of them is the source iteration (SI) method that is 
extensively used to solve the neutron transport equation. This method converges 
rapidly for optically thin problems and converges slowly for optically thick problem, 
see (1,2). Even with modern computers, computer storage limitations often require 
the use of spatial meshes that are not optically thin in order to obtain accurate 
results. DeBarros and Larsen (3) developed a new method for general one-group 
slab-geometry discrete ordinates problems with linearly anisotropic scattering. This 
method produces solutions that are completely free from spatial truncation errors.  

In this paper, implementation and development of the solution methods with 
Chebyshev quadratures to SN transport equations in slab-geometry are reported. An 
outline of the remainder of this paper follows. In section II, first,  the  SN  transport 
equation is evaluated to a form for which the numerical solution with Chebyshev 
quadrature sets is obtainable. Then, the discrete ordinates equations and separation 
of variables procedure for obtaining the analytic solution set of these equations in a 
homogeneous domain are described. So, by implementing the SGF method to 
spatially discretized neutron balance equation an iterative solution algorithm is 
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derived. In section III, numerical results are given and a brief discussion is given in 
section IV.  
 

METHOD  
Let us consider the following transport equation in a homogeneous slab; 

 

( )µ
ψ µ

σ ψ µ σ µ ψ µ µ ϕ
πd x

dx
x x x x d d Q xT S

( , )
( ) ( , ) ( , ) ( , ) ,+ = ′ ′ ′ +

−
∫∫ 0
1

1

0

2

0
1
2

 

-1≤ µ ≤ 1,   0 ≤ x ≤ a                                                    (1) 
 
where a is the thickness of the slab. In Eq.(1) scattering function is expanded in 
Chebyshev polynomials (4),  by writing 
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where µ0  is the cosine of the scattering angle and given by  
 

µ µµ µ µ ϕ ϕ0
2 21 1= ′ + − − ′ − ′Cos( ) , 1< µ , µ′ < 1 ,  0< ϕ , ϕ′<  2π     (3) 

 
Upon insertion of  Eq.(2) and Eq.(3) into Eq.(1) and carrying out the 

integration over ϕ′, the result for only isotropic source and isotropic scattering is  
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Now, it is desired to solve numerically by using Chebyshev quadratures. To 

do this, the first term on the right hand side of Eq.(4) may be evaluated as 
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and by using this evaluated expression in Eq.(4), SN  equation is obtained for which 
a numerical solution is obtainable by using Gauss - Chebyshev quadrature sets;  
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ψm (0) = fm   for µm > 0, ψm (a) = gm   for  µm < 0,    0 ≤  x  ≤  a,  m = 1,...,N            (5) 
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Here fm  and gm  are specificated incident fluxes on the outer boundaries of 
the slab. Used notations are standard, see (5); ψm (x) is the angular flux of particles 
travelling in the discrete ordinates direction µm , ωm is the  quadrature weights or 
weighting factor for direction µm, see (6),  σT (x) is the total cross section, σS0 (x) is 
the zero’th component of the differential scattering cross section and Q0 (x) is the 
zero’th component of the interior source. All of these quantities are assumed to be 
piecewise constant in space. In this paper, even-order Gauss-Chebyshev quadrature 
sets are used, then µm  are the roots of N’th order Chebyshev polynomials and these 
roots have symmetric values on the interval  -1 ≤ µ ≤ 1.   These roots and weighting 
factors can be calculated easily from the following equations, respectively;  
 

µm = Cos( (2m-1) π / 2N ),     ωm = π / N         m = 1, ..... N 
 

General solution of Eq.(5) can be written as  
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where ψm

p x( )  and ψm
h x( )  denote the particular and homogeneous solutions of 

Eq.(5), respectively. It is easy to verify that the spatially constant particular solution 
of Eq.(5) is given by  
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In this paper it is chosen to be  σT > σS0   in all case. This assumption means 

physically that each spatial cell consists of material for which an infinite system is 
subcritical. 
 

Particular solution, that is,ψm
p x( ) , was found, it is needed to determine the 

homogeneous solutionψm
h x( ) . For this solution, it is customary to use the method 

of se- paration of variables. Thus the solution of homogeneous part of  Eq.(5) is the 
form of  
 

ψ ν σ νm
h

m Tx H x( ) ( ) exp( / )= ,           0 ≤  x  ≤  a,   1 ≤  m  ≤ N                  (8) 
 
Substituting Eq.(8) into the homogeneous part of Eq.(5), it is easy to obtain an 
expression for Hm (ν) 
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To obtain an equation for the ν eigenvalues, Eq.(9) is multiplied by 1 2− µ ωm m   
and summed over all m. The result is the following equation for ν ; 
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The roots νk, 1 ≤  k  ≤ N  of  Eq.(10) are the eigenvalues of the SN  equations. Due to 
symmetry of Gauss-Chebyshev quadrature set, the roots νk which are obtained from 
the resulting equation has also only symmetric values. 
 

To conclude, Eq.(6) can be written as 
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where ψm

p x( )  is  given  by Eq.(7) and βk, 1 ≤ k ≤ N are  arbitrary  constants. 
Eq.(11) represents the general solution of  Eq.(5) in given domain. In the following  
procedure, it is derived a numerical  method in which a generalization is made for 
the solution of  SN   equations in slab geometry by using the boundary conditions and 
the continuity conditions. 
  

It is driven Spectral Green’s Function (SGF) equations for one spatial cell 
and described iterative scheme for solving these equations on system consisting of 
many cells. Let us begin by integrating  Eq.(5) over an arbitrary cell which has 
constant cross sections and constant interior source. The result is the familiar spatial 
balance equation; 
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where ψm,i+1/2 and ψm,i-1/2 are the cell-edge-average angular fluxes, ψm,i are the cell-
average angular fluxes and σS0,i  and Q0,i are the cross section and interior source for 
i’th cell, respectively. In  Eq.(12), ψm,i cell-average angular flux is defined by 
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where hi is the cell width, hi = xi+1/2 - xi-1/2. The balance equation (i.e. Eq.(12)) relates 
the cell-average angular fluxes to the cell-edge-average angular fluxes. The spatial 
balance equation, combined with the boundary conditions imposed on the outer 
boundaries of the slab 
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ψm,1/2 = fm         µm >0 ,        1 ≤ m ≤ N/2                                                   (14.a) 
ψm,I+1/2 = gm       µm <0 ,       N/2< m ≤ N                                                   (14.b) 

 
work, see where  fm  and gm  are prescribed  boundary conditions and I is the number 
of spatial cells in the slab.  As  shown in  Eq.(12) and  Eq.(14),  the resulting system  
still has more unknowns  than  equations.  Therefore,  additional  equations are  
needed to obtain the same number of equations as  unknowns.   Here,  it is followed 
earlier study (3), and imposed the auxiliary equations as additional equations; 
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where Gm,i  represents the contribution to the cell-average angular flux ψm,i due to 
interior source Q0,i  and θm,n ’ s play the role of the Green’s function in discretized 
space.  To determine θm,n first, let’s substitute  Eq.(11) into  Eq.(13) and get  
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and also from  Eq.(11) cell-edge-average angular flux can be written in the form of  
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To proceed further,  Eq.(16) and  Eq.(17) are introduced into Eq.(15) to obtain 
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Thus, Eq.(19) represents a linear system of  N2 equations in the N2 unknowns θm,n. 
By using Eq.(15) in  Eq.(12), equations which are soluble with simple iteration 
technique are obtained 
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where  Am,n  are the elements of iteration matrix which includes the  values of  µm , 
C0 , θm,n , ωm  and h. From computed values of cell-edge-average angular flux, 
average cell-edge scalar flux are computed by summing over all angles. 
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NUMERICAL RESULTS 
Let us first consider a homogeneous  slab  with  σT  = 0.9 cm-1, σS0 = 0.6 cm-1, 

a = 50 cm, Q0 = 0  and  the boundary conditions ψm,1/2 = 1.0 for µm > 0  and ψm,I+1/2 
= 0 for µm < 0. Solution of the problem is made by using the standard  S2 , S4  and  
S12 Gauss - Chebyshev quadrature sets, with different number of spatial cells. The 
cell-edge scalar fluxes at  x (cm) = 0, 25, and 50 for each  run are presented in 
Tables I, II and III. In each Table the number of iterations (ITN) required to achieve 
a convergence criterion of ∈ = 0  are also given. In  these  problem, iteration is 
continued up to the difference between two consecutive iterations equals to zero. 
Thus, because  the iteration number is given, it is not needed to compute the spectral 
radius.  This problem is also solved by using Gauss - Legendre quadrature sets at the 
same conditions. The results of these solutions are also presented at the right hand 
side of Tables 1,2 and 3. 
 
Table 1. S2  Solution of Homogeneous Problem 

with Gauss-Chebyshev quadrature 
sets with Gauss-Legendre quadrature sets Number 

of cells 
Φ(0) Φ(25) Φ(50) IT

N Φ(0) Φ(25) Φ(50) ITN 

2 0.736x100 0.671x10-8 0.413x10-14 51 0.634x100 0.107x10-9 0.133x10-19 45 

4 0.736x100 0.671x10-8 0.413x10-14 59 0.634x100 0.107x10-9 0.133x10-19 57 

10 0.736x100 0.671x10-8 0.413x10-14 67 0.634x100 0.107x10-9 0.133x10-19 63 

20 0.736x100 0.671x10-8 0.413x10-14 95 0.634x100 0.107x10-9 0.133x10-19 82 

50 0.736x100 0.671x10-8 0.413x10-14 207 0.634x100 0.107x10-9 0.133x10-19 160 
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Table 2. S4 Solution of Homogeneous Problem 
with Gauss-Chebyshev quadrature 

sets with Gauss-Legendre quadrature sets Number 
of cells 

Φ(0) Φ(25) Φ(50) ITN Φ(0) Φ(25) Φ(50) ITN 

2 0.657x100 0.466x10-8 0.344x10-16 45 0.634x100 0.146x10-8 0.349x10-17 43 

4 0.657x100 0.466x10-8 0.344x10-16 53 0.634x100 0.146x10-8 0.349x10-17 52 

10 0.657x100 0.466x10-8 0.344x10-16 58 0.634x100 0.146x10-8 0. 349x10-17 57 

20 0.657x100 0.466x10-8 0.344x10-16 76 0.634x100 0.146x10-8 0. 349x10-17 72 

50 0.657x100 0.466x10-8 0.344x10-16 156 0.634x100 0.146x10-8 0. 349x10-17 150 

 
Table 3. S12  Solution of Homogeneous Problem 

with Gauss-Chebyshev quadrature 
sets with Gauss-Legendre quadrature sets Number 

of cells 
Φ(0) Φ(25) Φ(50) ITN Φ(0) Φ(25) Φ(50) ITN 

2 0.637x100 0.178x10-8 0.557x10-17 44 0.634x100 0.161x10-8 0.460x10-17 42 

4 0.637x100 0.178x10-8 0.557x10-17 50 0.634x100 0.161x10-8 0.460x10-17 51 

10 0.637x100 0.178x10-8 0.557x10-17 56 0.634x100 0.161x10-8 0. 460x10-17 56 

20 0.637x100 0.178x10-8 0.557x10-17 72 0.634x100 0.161x10-8 0. 460x10-17 71 

50 0.637x100 0.178x10-8 0.557x10-17 148 0.634x100 0.161x10-8 0. 460x10-17 147 

 
Second problem in this paper is the heterogeneous slab, 50cm thick, 

consisting of three regions. The first (leftmost) region, 10cm thick, has   σT
  = 0.9cm-

1 ,  σS0 =0.8cm-1  and Q0 = 0. The second (middle) region, 30cm thick, has σT = 
0.8cm-1 , σS0 = 0.4cm-1 and Q0 = 0. The third (rightmost) region, 10cm  thick, has the 
same material properties as the first region. The boundary conditions are ψm,1/2 = 1.0 
for µm > 0 and ψm,I+1/2 = 0 for µm <  0. As in the first problem, solution of this 
problem is made by using the standard S2 and  S4 Gauss - Chebyshev quadrature 
sets, with different number of spatial cells. Tables 4 and 6 show the results obtained 
for different number of cells. The first column of each table in which the number of 
cells in each subdomain is also presented shows the total  number of cells, next four 
columns show the cell-edge scalar  fluxes at the interfaces or at the points x(cm)= 0, 
10, 40 and 50, the last columns show the number of iterations  required to achieve 
the  convergence  criterion of ∈=0. This problem is also solved by using Gauss-
Legendre quadrature sets at the same conditions. The results of this solution are 
presented in Tables 5 and 7 for different number of spatial cells. 
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Table 4. S2 Solution of Heterogeneous Problem with Gauss-Chebyshev Quadrature 
Sets 

Number of 
Cells Φ(0) Φ(10) Φ(40) Φ(50) ITN 

1 x 3 x 1 0.9898x100 0.7107x10-1 0.1778x10-10 0.8989x10-12 67 

2 x 6 x 2 0.9898x100 0.7107x10-1 0.1778x10-10 0.8989x10-12 200 

4 x 12 x 4 0.9898x100 0.7107x10-1 0.1778x10-10 0.8989x10-12 359 

10 x 30 x 10 0.9898x100 0.7107x10-1 0.1778x10-10 0.8989x10-12 849 
 
Table 5. S2 Solution of Heterogeneous Problem with Gauss-Legendre Quadrature 

Sets 
Number of 

Cells Φ(0) Φ(10) Φ(40) Φ(50) ITN 

1 x 3 x 1 0.7500x100 0.2661x10-2 0.6206x10-15 0.1718x10-17 61 

2 x 6 x 2 0.7500x100 0.2661x10-2 0.6206x10-15 0.1718x10-17 112 

4 x 12 x 4 0.7500x100 0.2661x10-2 0.6206x10-15 0.1718x10-17 158 

10 x 30 x 10 0.7500x100 0.2661x10-2 0.6206x10-15 0.1718x10-17 348 
 
Table 6. S4 Solution of Heterogeneous Problem with Gauss-Chebyshev Quadrature 

Sets 
Number of 

Cells Φ(0) Φ(10) Φ(40) Φ(50) ITN 

1 x 3 x 1 0.7915x100 0.5473x10-2 0.1071x10-11 0.8144x10-14 56 

2 x 6 x 2 0.7915x100 0.5473x10-2 0.1071x10-11 0.8144x10-14 105 

4 x 12 x 4 0.7915x100 0.5473x10-2 0.1071x10-11 0.8144x10-14 157 

10 x 30 x 10 0.7915x100 0.5473x10-2 0.1071x10-11 0.8144x10-14 343 
 
Table 7. S4 Solution of Heterogeneous Problem with Gauss-Legendre Quadrature 

Sets 
Number of 

Cells Φ(0) Φ(10) Φ(40) Φ(50) ITN 

1 x 3 x 1 0.7500x100 0.2867x10-2 0.1514x10-12 0.6384x10-15 55 

2 x 6 x 2 0.7500x100 0.2867x10-2 0.1514x10-12 0.6384x10-15 96 

4 x 12 x 4 0.7500x100 0.2867x10-2 0.1514x10-12 0.6384x10-15 137 

10 x 30 x 10 0.7500x100 0.2867x10-2 0.1514x10-12 0.6384x10-15 291 
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CONCLUSION 
In this paper, implementation of  SGF method to the numerical solution of  

SN transport equations with Chebyshev quadrature sets is given. A more detailed 
information about SGF method is given in the earlier work (3). Here, it is not 
informed again. The source Q0 (x)  in each region is accepted to be constant. 
However, in the method, any functional form of the source Q0 (x) can be used and 
an analytic particular solution analogous to Eq.(7) can be obtained. In the work, the 
method is applied up to N=12 for both Legendre and Chebyshev quadrature sets. But 
it can also be applied to quadrature sets of arbitrary order N>12. In this case, as 
shown in Eq.(10), to calculate νk, 1≤ k ≤ N eigenvalues N’th order polynomial 
equation must be solved. Then, when N become large, finite arithmetic and roundoff 
errors may occur. Besides, to determine θm,n, N system of N linear equations must be 
solved; as N becomes large, the coefficients of unknowns θm,n  become more 
dispersed. So, this situation imposes a practical limitation on the order N for the 
accuracy of the method.  As shown  in the tables, cell’s width corresponding to h 
(cm) = 1, 5/2, 5, 25/2 and 25 give the same results; that is, this method is free from 
truncation error, as in earlier work(3). It is also noted here, that the number of 
iterations necessary to achieve the convergence of ∈ = 0 become smaller when the 
cell’s width becomes coarser. In all calculations, convergence criteria is chosen to be 
∈ = 0. As seen from the tables the scalar  flux  at the end of the slab ( x = 50 cm)  
changes  from ∼10-12 to ∼10-19. If it had been chosen to be  ∈ > 10-12 -10-19, different 
results were obtained for different numbers of spatial cells. For more general 
situation it is taken to be ∈ = 0 for each run. Another interesting feature of this paper 
is that, as shown in table III, when the quadrature order N increases, the results 
obtained for both Legendre and Chebyshev quadrature sets approach to same results, 
as expected. For Gauss-Legendre quadrature sets, the summation of ωm over all m 
exactly equal to 2 for any order N. But Gauss-Chebyshev quadrature sets, the 

summation of 1 2− µ ωm m  over all m, see Eq.(5), converge to 2 slowly, that is, if N 
becomes sufficiently large then this summation converges to 2 exactly. 

It is assumed that the neutrons have the same energy, that is, it is operated 
only on a one-group problem. It is also assumed that the scattering is isotropic. 
However, this method can be applied to multigroup and anisotropic scattering 
problems. It is planned to investigate these problems in future works. 
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