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ABSTRACT

In this atricle we investigated the spectrum and the spectral singularities of the
Quadratic pencil of Klein-Gordon Operator L generated in L*(R.) by the differential
expression

()=y"+(2-0W)y,  xeR, =(0.0)
and the boundary condition

[ K@)y(x)dx+ay'(0) - Ar(0) =0

where Q and K are coplex valued functions K € L, (R+) and ,f € C, with
‘a‘ﬂ ﬂ‘ # 0. Discussing the spectrum, we proved that L has a finite number of
eigenvalues and spectral singulatities with finite multuplicities, if the conditions

limQ(x) = 0, sup{e”? UQ'(x)\ + \K(x)\]}< w0, £>0

X0 xeR,

hold. Later we have investigated the properties of the principal functions

corresponding to the spectral singularities. Moreover, some results about the
spectrum of L have also been applied to non-selfadjoint Sturm-Liouville.

Genel Sinir Kosulu ile Verilen Quadratic Pencil Klein-Gordon
Operatoriiniin Spectrumu ve Spectral Tekillikleri

OZET
Bu ¢alismada L*(R.) uzayinda

I(y)=y"+ (/1 - Q(X))zy, XER, = (O, oo) denklemi ve
[ KGoy(ds +@'(©0)- 10 =0

genel siir kosulu ile verilen Quadratic Pencil Klein-Gordon L operatoriiniin
spektral tekillikleri ve spektrumu incelenmistir. Burada K ve Q kompleks degerli

fonksiyonlar, K e L,(R, )ve e,/ € Colup, |a| +|8] 0.

Spectrum incelendiginde
limO(x) =0, sup{ef” o)+ \K(x)\]}< w, £>0
e XeR,

kosulunun saglanmasi durumunda L operatoriiniin sonlu sayida sonlu kath
Ozdegerlere ve spektral tekilliklere sahip oldugu arastirilmigtir. Sonra spektral
tekilliklere gore bas fonksiyonlar incelenmistir. Ayrica L operatoriiniin bazi
sonuglar1 non-selfadjoint Sturm-Liouville denklemine de her zaman uygulanabilir.
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INTRODUCTION
Let L, denote the operator generated K € L, (R+) by the differential expression
ly(y)==y"+q(x)y, xe R, =(0,0) (L.1)

and the boundary condition 3'(0)—hy(0)=0, where q is a complex valued

function and & € C . The study of the spectral analysis of L, has been started by
Naimark in 1954(Naimark, 1960). In this article, the spectrum of L, has been
investigated and shown that it is composed of the eigenvalues, the continuous
spectrum and the spectral singularities. It has been proved that the spectral
singularities are on the continuous spectrum and are the poles of the resolvent’s
kernel; but they are not the eigenvalues. Also, if

0

Ie”‘q( x )‘dx <o

0
holds, for some & > 0, then it has been obtained that L, has a finite number of
eigenvalues and spectral singularities with finite multiplicities. Moreover, the
spectral expansion has been derived in some particular cases.

The above results of Naimark has been generalized to the differential operators
on the whole real axis by Kemp(Kemp, 1958).

One of the very important steps in the spectral analysis of L, has been taken by
Pavlov(Pavlov, 1967). In this article the dependence of the structure of spectral
singularities of L, to the behaviour of the potential function at infinity has been
studied.

The spectral analysis of the non-selfadjoint operator L, generated in LR.) by
(1.1) and the boundary condition

[ K@)y(x)dx +ay'(0) = 4(0) =0

in which K eLz(R+) is a coplex valued function and ¢,BeC has been

investigated in detail by Kral (Krall, 1965).
Let us consider a differential expression of the form

[(M=y"+(A-0))y, xeR,,
where Q is a complex valued function and is continuously differentiable on R, and
bounded.

We denote by D, those functions f defined on R, and satisfying

i fel’(R),

ii. /' exists and absolutely continuous on every finite subinterval of R, ,

i /(f)e L*(R,)-

Let K be an arbitrary coplex-valued function in 7*(R,), «,f € Cand
‘a‘ + ‘ ﬂ‘ # 0. We denote by D those functions f satisfying

i fEDos

i [K(x)/(x)dx+af'(0)- F(0)=0-
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It is clear that, D is dense in L*(R,) We define the operator L by Lf =1(f)
for all f in D.

In this paper, we discuss the discrete spectrum of L and prove that this operator
has a finite number of eigenvalues and spectral singularities and each of them is a
finite multiplicity, under the conditions

1i££le(x) =0, suRp{eg& ﬂQ’(x)| + |K(x)|]}< o, £>0

Afterwards the properties of the principal functions corresponding to the spectral
singularities of L are obtained.

2. Solutions of /(y)=0
Let us suppose the functions Q satisfy

fx Qe +|Q/ (oljax <. @1

[OJnder the condition (2.1) the equation /(y)=0 has the solution

et (x,A) ="V 4 TA* (x,t)e™dt (2.2)
and )

e (x,A)=e ™I 4 J-A’ (x,t)e M dt (23)

for leC.={1:AeC, ImA>0} and ieE‘f:{/i:/‘teC, Im A <0},

respectively, where w(x) :T O(¢)dt and the kernels 4" (x,t) may be expressed in

terms of Q. 4% (x,¢)are continuously differentiable with respect to their arguments
and

4% (x.0)| < cg[x;tj exp{¢(x)} 24

A (D47 ()| < c[a;z (";t) + 0(";)} 2.5)
hold, where

£ = [lowF +lowl, ¢ =[lowf + 20w, 26)

0 = LJowf +/o'w @7)

and C>0 is a constant. Therefore e (x, A)and e (x, A )are analytic with respect
tolindeC,={A:4eC, ImA>0}andleC-={1:1eC, Im1<0}

, respevtively and continuous up to the real axis. e* (x, ﬂ,) also satisfy
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FxImA

e|T|J, Ae Ei,
et (x,2) = +i[A - 0(x) ™ ™ + O(1), A eC.,

Let @™ (x, A) denote the solutions of /(y)=0 subject to the conditions

A —> o0, 2.8

ei (x,/l) — eiiw(x)iiﬂx + 0[

A=, (2.9)

lime*™* @ (x,A) =1, lime ¢ (x,1)=Fil, de C. (2.10)
morzg\(fer o

Wle* (x,2),0% (x,1)|=F2iA, AeC. @11

Wle (x,A),e (x,2)|= —2i4, AeR=(0,) 2.12)

hold, where W[ fis fz] is the Wronskian of f; and f5 . The results started above
have been obtained by Jaulent-Jean.

1. The Resolvent and The Continuous Spectrum of L.

Let us consider the following functions

N*(1) = j K (x)e* (x, A)dx + ae>(0,) — fe* (0,1) (3.1
0

N (2) = [K(@)p* (x, A)dx + ap, (0,2)— Bp* (0, )
0

g ()= ﬁ {N* D™ (t, )= N, (De* (t, ) -p*(t, /1)_[ e’ (x, /I)K(x)dx}

1 + K +
im{e(t,i)!¢(x,ﬂ)K(x)dx}

Let
G (x,t,A), AeC
Gt ay=]G bAs AeC, (32)
G (x,t,A), AeC_
be the Green’s function of L obtained by the standart techniques, where
G* (x,t,A) =G} (x,t, 1)+ G} (x,t,A) (3.3)
Gy (x,t,A) = gubg G4 (3.4)

N*(A)
0, 0<t<x (3.5)
G2i (x,t,A)= _ e (x, ) (t, 1) N e*(t,)p* (x, 1) <1< o0 ’ ’
2iA 2iA ’ -
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We will denote the continuous spectrum of L by o, (L) . Using (3.2)-(3.5) ina
similar way to Theorem4.4 in Krall(Krall, 1965) we have the following

Theorem 3.1 o, (L) = (— oo,oo)

4. The Eigenvalues and the Spectral Singularities of L

It is trivial from (2.11) and (2.12) that the functions " (x,A) and w(x,A)
defined by

w(x,A)=Ne"(x,A)— Ny (x,4), AeC, 4.1)
w(x,1)=N"e (x,1)~ N e"(x,1), AeR" =R/{0} 4.2)
are the solutions of the boundary value problem

V'+(2-0)fy=0,  xeR,
[ Ky +ay'(0) = (0) =0

where

N;(A) = [K()p* (x. A)dx +ap,” (0.2) - fp* (0.2)-

Let us denote the eigenvalues and spectral singularities of L by o ,(L) and
o (L), respectively. From (2.8), (2.10), (3.4) and (4.2) it is trivial that

o, (L)={A:4eC,, N =0juli:1eC, N (H)=0] 43)

o, (L)={A:1eR", N"(A)=0ju{i:heR", N (2)=0} (4.4)

laer, N'())=0jn{1:1eR’, N (1)=0}=0

Definition 4.1 The multiplicity of a zero N (A)(or N (1)) in C. (or

C_) is called as the multiplicity of corresponding eigenvalue or spectral singularity
of L

In order to investigate the quantitative properties of the eigenvalues and the
spectral singularities of L, we need to discuss the quantitative properties of the zeros

of N"(A)and N (A1) in C.and C_, respectively. For the sake of siplicity we
will consider only the zeros of N*"( 1) in C.. A similar procedure may also be
employed for zeros of N (A1) in C_. Let us define

M ={ieC,, N' () =0}, MI ={i:1e R, N"(2)=0}.
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Lemma 4.2. Let K € L'(R,) N L*(R, ) . Under the condition (2.1) we have

i. Theset M 1+ is bounded and has at most a countable number of elements and
its limit points can lie only in a bounded subinterval of real axis

ii. Theset M, is compact.

Proof: From (2.2) we obtain that N ( 4 ) is analytic in C, and has the form

N*(2) = idae™® - alio0)e™® + 47 (0,0)]+ T £ (t)e ™ dt - (4.5)
0
where
£ = K@ + [ K(x)A" (x.0)dx +ad; (0,0) - 4" (0.1)- (4.6)
0

since f ()€ L'(R,) then
N*(2) = idae™® - aliQ(0)e™® + 47 (0,0)]- fe™® +o(1),[2| > (@.7)

holds by (4.5). The proof may be completed by (4.7).
Now, let us assume that

0

[te=lo@|+|K@fix <o >0 (4.8)

holds.

Theorem 4.3. Under the condition (4.8) the operator L has a finite number of
eigenvalues and spectral singularities and each of them is of a finite multiplicity.

We easily prove Theorem 4.3 using the analytic continuation technique.

Now let us discuss whether the hyphothesis of Theorem 4.3 can be weakened to
attain the same result. For this we will assume that

)1613; O(x) =0, s;up{egﬁ [IQ'(x)| + |K(x)|]}< o, £>0 (4.9)

hold. From (2.2), (2.4) and (2.5), it is clear that under the condition (4.9) the

function N (A ) is analytic in C+ and all of its derivatives are continuous in C .
So

|N*(/1) - z'/lae"w<°>| <w, AeC. (4.10)
d N*(A)<4, AeCy, r=12,.. (4.11)
dx
hold, where
A = 2’cjt’ exp{—%x/;}dt, r=12,... (4.12)
0

and ¢>0 is a constant.
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Let us denote the set of all limit points of M|" and M, by M, and M,

respectively and set of all zeros N " ( A) with infinity multiplicity in C. by M .
It is clear that
M;cM,, M,cM,, M;,cM,;.
Using of the continuity of all derivatives of N " (A ) on the real axis we obtain
M;cM:, M;cM;. 4.13)

We will use the following uniqueness theorem of Pavlov for the analytic
functions on the upper half-plane, to prove the next result.

Pavlov’s Theorem: Let us assume that the function fis analytic in C, , all of its
derivatives are continuous up to the real axis and there exist T>0 such that

f )| <4, zeCl, |d<2 (4.14)
and

RS PR LG P (4.15)
<o 1+x  1+x

hold. If the set Q with linear Lebesque measure zero is the set of all zeros of the
function f'with infinity multiplicity and if

[InE)du(@,) =~

r

holds, then f(z)=0, where E(s)=inf A": , ¥=0,1,..,u(0Q,) is the linear
rorl

Lebesque measure of s-neighbourhood of Q and h is an arbitrary positive
constant(Pavlov, 1967).

Lemmadd. ! -g.

Proof: It is trivial from Lemma 4.2 and (4.10), (4.11) that N (A1) satisfies
(4.14) and (4.15). Since the function n* (1) is not equal to zero identically, then by

the Pavlov’s Theorem M ] satisfies

h
[InE(s)duM ) >~ (4.16)
0

r

. As
where E(s) =inf V' , M(M.,) is the linear Lebesque measure of s-
roorl .

neighbourhood of M 5+ and the constant A, is defined by (4.12).

Now we will obtain the following estimates for 4, :
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A, =2"cjt’exp{—;ﬁ}dtsz;b"r"r!a (4.17)
0

where B and b are constants depending on ¢ and & . From (4.17) we arrive to
As
7!

E(S)Zil}f i SBir}f{b"srrr}S Bexp{—b"e"s"}

or by (4.16)

[Laumz,) <o (4.18)
S

0

holds for an arbitrary s, if and only if ILI(M;S) =0or M, =0.

Theorem 4.5. Under the condition (4.9) the operator L has a finite number of
eigenvalues and spectral singularities and eah of them is of a finite multiplicity.

Proof: To be able to prove theorem we have to show that the function N and
N~ have finite number of zeros with the finite multiplicities in E+ and E_,
respectively. We are going to prove it only for N . The similar proof can be given
for N~ . From Lemma 4.4 and (4.13) we obtain that M, =M, = . So the

bounded sets M," and M, have no limit points(see lemma 4.2), ie., the function

N has only a finite number of zeros in C. Since M 5+ = these zeros are of
finite multiplicity.

Now we will discuss the structure of M 5+ under the weaker codition (4.9).

Theorem 4.6. If
limO(x) = 0, sup{e“"' lo) +|K(x)|]}< o, £>0,0<5 < % (4.19)
Y= xeR,

hold, then

1-26

S 0] <o

n

holds, where {l
M;.
Proof: From (2.4)-(2.7) and (4.19) we obtain
- 15 _
= N*(A)\<Bb'Hr 4, LeC. (4.20)
dr

where B and b constants depending on & and J. Let G, =G,(C,), 0<8 <1 be

+

N } is the sequence of lengths of all finite complementary intervals of

the Gevrey classof analytic functions in C, and @, be the system of all sets of

uniqueness for G9 (Hruscev, 1977), Hence it is trivial from (4.20) that
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N e€G 5, M{ gD, -
5 5

Then by the Carlesson Theorem we ontain
1-26

2] <o

The above theorem shows that the eigenvalues of L may not be of finite numbers
if the Condition (4.19) is satisfied

5. Principal Functions.
In this section we assume (4.9) holds. Let A, A3...4] and A;,4;...4; denote

the zeros of the functions N* in C . (which are the eigenvalues of L) with

multiplicities m; ,mj..m]

A Ay A, and 4,4

v+l 27 v+2 0

and m, ,m,..m, , respevtively. Similary, let
.A, be zeros of N"(A) and N™(A) in R" with

multiplicities », ,n,..n, and n ¢, ,..N, ,respectively.

v 4 .
4 (xa ;ti )7 v (xaﬂ') 9o -1 4 (xaﬂ')
di PIRT WV

A=A
and

mj -1

_ N d o d _
4 (.X,/l,- )’{l// (X,/I)} gees v 4 (x’ )V)
dz s .

are called the principal functions corresponding to the eigenvalues
A=A, i=12,.,j and A =2, i=12,..,k of L, respectively, where "
are defined by (4.1). Similarly

;
m; =1

l//(x,/if),{dy/(x,ﬁ)} e d —w(x,A) ,i=1.v,v+1,..1
dA s ldam!

A=af

are the prencipal functions corresponding to the spectral singularities of L, where i/

is defined by (4.2). From (2.8), (4.1) and (4.3) we obtain that the principal functions
corresponging to the eigenvalues of L are in L*(R.,).
Let us introduce the Hilbert spaces

H, :{fi _[(l‘f"x)zn0 f(x)zdx<oo}v

= [k

with

g(x)‘2 dx < w}

0

reof e el” = [+~

0

©

I = [+ (o d

)ZHD
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respectively, where 1, = max{nl NP 3 } It is clear that
H, ELZR*)EH*'
Obviously H. is isomorphic to the dual of H,(Berenzanski, 1968).

Therorem 5.1.

d p(,2)p e’ (R),n=0,.,m,—1i=1.,v,v+l..,1/
da" s

d (p(.,l) eH ,n=0,.,n-Li=1.,v,v+1,../
dr .

Proof: Let 0 <n<n, —1 and 1 <7 <v. Using (4.2) we have

{5’; q’(x,/l)};h_;ﬁ = ;ZOA/(ﬂ, ){jﬂ; e’ (x,/l)}}b_ll P (51)

where

se-( ey

The proof of theorem is obtained from (2.2), (2.8) and (5.1). In a similar way we
may also prove the result for 0 <n<n, =1 and v+1<i< /.
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